











SN74LV4052A-Q1

SCLS469F - MARCH 2003-REVISED DECEMBER 2014

# SN74LV4052A-Q1 Dual 4-Channel Analog Multiplexers and Demultiplexers

#### **Features**

- **Qualified for Automotive Applications**
- AEC-Q100 Qualified With the Following Results:
  - Device Temperature Grade 1: -40°C to +125°C Ambient Operating Temperature Range
  - Device HBM ESD Classification Level 2
  - Device CDM ESD Classification Level C4B
- Supports Mixed-Mode Voltage Operation on All **Ports**
- Fast Switching
- High On-Off Output-Voltage Ratio
- Low Crosstalk Between Switches
- **Extremely Low Input Current**

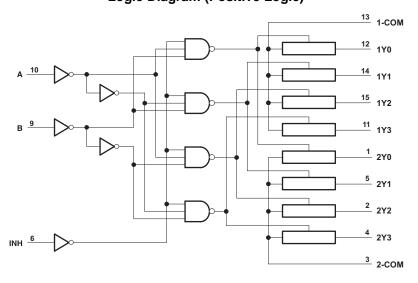
### **Applications**

- Automotive:
  - Signal Gating
  - Chopping
  - Modulation or Demodulation (Modem)
  - Signal Multiplexing for Analog-to-Digital and Digital-to-Analog Conversion Systems

## 3 Description

These dual 4-channel CMOS analog multiplexers and demultiplexers are designed for 2-V to 5.5-V V<sub>CC</sub> operation.

The SN7LV4052A-Q1 devices handle both analog and digital signals. Each channel permits signals with amplitudes up to 5.5 V (peak).


Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

#### Device Information<sup>(1)</sup>

| PART NUMBER     | PACKAGE    | BODY SIZE (NOM)   |  |  |
|-----------------|------------|-------------------|--|--|
| CN741 V40524 O4 | TSSOP (16) | 5.00 mm × 4.40 mm |  |  |
| SN74LV4052A-Q1  | SOIC (16)  | 9.90 mm × 3.91 mm |  |  |

(1) For all available packages, see the orderable addendum at the end of the datasheet.

## Logic Diagram (Positive Logic)





#### **Table of Contents**

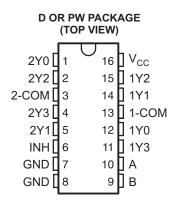
| 1 | Features 1                                                                     |                             | 8.1 Overview                                     | 11 |
|---|--------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------|----|
| 2 | Applications 1                                                                 |                             | 8.2 Functional Block Diagram                     | 11 |
| 3 | Description 1                                                                  |                             | 8.3 Feature Description                          | 11 |
| 4 | Revision History2                                                              |                             | 8.4 Device Functional Modes                      | 11 |
| 5 | Pin Configuration and Functions                                                | 9                           | Application and Implementation                   | 12 |
| 6 | Specifications4                                                                |                             | 9.1 Application Information                      | 12 |
| U | •                                                                              |                             | 9.2 Typical Application                          | 12 |
|   | 6.1 Absolute Maximum Ratings                                                   | 10                          | Power Supply Recommendations                     | 13 |
|   | 6.3 Recommended Operating Conditions                                           | 11                          | Layout                                           | 13 |
|   | 6.4 Thermal Information                                                        |                             | 11.1 Layout Guidelines                           | 13 |
|   | 6.5 Operating Characteristics                                                  |                             | 11.2 Layout Example                              | 13 |
|   | 6.6 Electrical Characteristics 5                                               | 9 4 10 11 5 5 12 5 6 6 7 13 | Device and Documentation Support                 | 14 |
|   | 6.7 Switching Characteristics V <sub>CC</sub> = 3.3 V ± 0.3 V 5                |                             | 12.1 Trademarks                                  |    |
|   | 6.8 Switching Characteristics $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \dots 6$ |                             | 12.2 Electrostatic Discharge Caution             | 14 |
|   | 6.9 Analog Switch Characteristics                                              |                             | 12.3 Glossary                                    |    |
| 7 | Parameter Measurement Information 7                                            | 13                          | Mechanical, Packaging, and Orderable Information | 14 |
| 8 | Detailed Description 11                                                        |                             |                                                  |    |

#### 4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

#### Changes from Revision E (November 2012) to Revision F

Page


Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

Changes from Revision D (June 2011) to Revision E

Page



# 5 Pin Configuration and Functions



#### **Pin Functions**

|     | PIN   | (1)                |                                                                                                             |
|-----|-------|--------------------|-------------------------------------------------------------------------------------------------------------|
| NO. | NAME  | I/O <sup>(1)</sup> | DESCRIPTION                                                                                                 |
| 1   | 2Y0   | I <sup>(1)</sup>   | Input to mux 2                                                                                              |
| 2   | 2Y2   | I <sup>(1)</sup>   | Input to mux 2                                                                                              |
| 3   | 2-COM | O <sup>(1)</sup>   | Output of mux 2                                                                                             |
| 4   | 2Y3   | J <sup>(1)</sup>   | Input to mux 2                                                                                              |
| 5   | 2Y1   | J <sup>(1)</sup>   | Input to mux 2                                                                                              |
| 6   | INH   | I                  | Enables the outputs of the device. Logic low level with turn the outputs on, high level will turn them off. |
| 7   | GND   | -                  | Ground                                                                                                      |
| 8   | GND   | -                  | Ground                                                                                                      |
| 9   | В     | I                  | Selector line for outputs (see Device Functional Modes for specific information)                            |
| 10  | А     | I                  | Selector line for outputs (see Device Functional Modes for specific information)                            |
| 11  | 1Y3   | I <sup>(1)</sup>   | Input to mux 1                                                                                              |
| 12  | 1Y0   | I <sup>(1)</sup>   | Input to mux 1                                                                                              |
| 13  | 1-COM | O <sup>(1)</sup>   | Output of mux 1                                                                                             |
| 14  | 1Y1   | J <sup>(1)</sup>   | Input to mux 1                                                                                              |
| 15  | 1Y2   | J <sup>(1)</sup>   | Input to mux 1                                                                                              |
| 16  | Vcc   | I                  | Device power input                                                                                          |

<sup>(1)</sup> These I/O descriptions represent the device when used as a multiplexer, when this device is operated as a demultiplexer pins 1Y0, 1Y1, 1Y2, 1Y3, 2Y0, 2Y1, 2Y2, 2Y3 may be considered outputs (O) and pins 1-COM and 2-COM may be considered inputs (I).



### 6 Specifications

## 6.1 Absolute Maximum Ratings<sup>(1)</sup>

over operating free-air temperature range (unless otherwise noted)

|                  |                                |                          |  | MIN         | MAX                   | UNIT |
|------------------|--------------------------------|--------------------------|--|-------------|-----------------------|------|
| $V_{CC}$         | Supply voltage range           |                          |  | -0.5        | 7                     |      |
| $V_{I}$          | Input voltage range (2)        |                          |  | -0.5        | 7                     | V    |
| $V_{IO}$         | Switch I/O voltage range (2) ( | 3)                       |  | -0.5        | V <sub>CC</sub> + 0.5 |      |
| $I_{IK}$         | Input clamp current            | V <sub>1</sub> < 0       |  | -20         |                       |      |
| $I_{IOK}$        | I/O diode current              | V <sub>IO</sub> < 0      |  | <b>–</b> 50 |                       | A    |
| I <sub>T</sub>   | Switch through current         | $V_{IO} = 0$ to $V_{CC}$ |  |             | ±25                   | mA   |
|                  | Continuous current through     |                          |  | ±50         |                       |      |
| $T_{\text{stg}}$ | Storage temperature range      | 5 55                     |  |             |                       | ů    |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### 6.2 ESD Ratings

|                                            |                                 |                                                 |            | VALUE | UNIT |
|--------------------------------------------|---------------------------------|-------------------------------------------------|------------|-------|------|
|                                            |                                 | Human body model (HBM), per AEC (               | ±2000      |       |      |
| V <sub>(ESD)</sub> Electrostatic discharge | Charged device model (CDM), per | Corner pins (2Y0, GND, V <sub>CC</sub> , and B) | ±750       | V     |      |
|                                            |                                 | AEC Q100-011                                    | Other pins | ±500  |      |

<sup>(1)</sup> AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

#### 6.3 Recommended Operating Conditions<sup>(1)</sup>

|                 |                                          |                                            | MIN                   | NOM | MAX                 | UNIT |
|-----------------|------------------------------------------|--------------------------------------------|-----------------------|-----|---------------------|------|
| $V_{CC}$        | Supply voltage                           |                                            | 2 <sup>(2)</sup>      |     | 5.5                 | V    |
|                 |                                          | V <sub>CC</sub> = 2 V                      | 1.5                   |     |                     |      |
| .,              | High-level input voltage, control inputs | V <sub>CC</sub> = 2.3 V to 2.7 V           | V <sub>CC</sub> × 0.7 |     |                     | V    |
| $V_{IH}$        |                                          | V <sub>CC</sub> = 3 V to 3.6 V             | V <sub>CC</sub> × 0.7 |     |                     | V    |
|                 |                                          | V <sub>CC</sub> = 4.5 V to 5.5 V           | V <sub>CC</sub> × 0.7 |     |                     |      |
|                 |                                          | V <sub>CC</sub> = 2 V                      |                       |     | 0.5                 |      |
| .,              | Low-level input voltage, control inputs  | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ |                       |     | $V_{CC} \times 0.3$ | V    |
| $V_{IL}$        |                                          | V <sub>CC</sub> = 3 V to 3.6 V             |                       |     | $V_{CC} \times 0.3$ | V    |
|                 |                                          | V <sub>CC</sub> = 4.5 V to 5.5 V           |                       |     | $V_{CC} \times 0.3$ |      |
| VI              | Control input voltage                    |                                            | 0                     |     | 5.5                 | V    |
| V <sub>IO</sub> | Input/output voltage                     |                                            | 0                     |     | V <sub>CC</sub>     | V    |
|                 |                                          | V <sub>CC</sub> = 2.3 V to 2.7 V           |                       |     | 200                 |      |
| Δt/Δ<br>v       | Input transition rise or fall rate       | V <sub>CC</sub> = 3 V to 3.6 V             |                       |     | 100                 | ns/V |
| •               |                                          | V <sub>CC</sub> = 4.5 V to 5.5 V           |                       |     | 20                  |      |
| T <sub>A</sub>  | Operating free-air temperature           | SN74LV4052ATDRQ1,<br>SN74LV4052ATPWRQ1     | -40                   |     | 105                 | °C   |
| $T_A$           | Operating free-air temperature           | SN74LV4052AQPWRQ1                          | -40                   |     | 125                 |      |

Hold all unused inputs of the device at V<sub>CC</sub> or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Submit Documentation Feedback

Copyright © 2003–2014, Texas Instruments Incorporated

<sup>2)</sup> The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

<sup>(3)</sup> The maximum limit for this value is 5.5 V.

<sup>(2)</sup> With supply voltages at or near 2 V, the analog switch on-state resistance becomes very nonlinear. TI recommends transmitting only digital signals at these low supply voltages.



#### 6.4 Thermal Information

|                      |                                              | SN74LV4 | 4052A-Q1 |      |
|----------------------|----------------------------------------------|---------|----------|------|
|                      | THERMAL METRIC                               | D       | PW       | UNIT |
|                      |                                              | 16 PINS | 16 PINS  |      |
| $R_{\theta JA}$      | Junction-to-ambient thermal resistance       | 85.9    | 113.3    | °C/W |
| $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance    | 44.6    | 48.1     | °C/W |
| $R_{\theta JB}$      | Junction-to-board thermal resistance         | 43.4    | 58.4     | °C/W |
| ΨЈТ                  | Junction-to-top characterization parameter   | 13.4    | 6.2      | °C/W |
| ΨЈВ                  | Junction-to-board characterization parameter | 43.1    | 57.8     | °C/W |

## 6.5 Operating Characteristics

 $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$  (unless otherwise noted)

|          | PARAMETER                     | TEST CONDITIONS                    | TYP  | UNIT |
|----------|-------------------------------|------------------------------------|------|------|
| $C_{pd}$ | Power dissipation capacitance | C <sub>L</sub> = 50 pF, f = 10 MHz | 11.8 | pF   |

#### 6.6 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

|                   | DADAMETED                                 | TEST COMPITIONS                                                                                                                                                                         | J .,            | $T_A = -4$ | 10 to 105° | C   | T <sub>A</sub> = | -40 to 12 | 5°C | LINUT |
|-------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|------------|-----|------------------|-----------|-----|-------|
|                   | PARAMETER                                 | TEST CONDITIONS                                                                                                                                                                         | V <sub>CC</sub> | MIN        | TYP        | MAX | MIN              | TYP       | MAX | UNIT  |
|                   |                                           | $I_T = 2 \text{ mA},$                                                                                                                                                                   | 2.3 V           |            |            | 225 |                  |           | 225 |       |
| r <sub>on</sub>   | On-state switch resistance                | $V_I = V_{CC}$ or GND,<br>$V_{INH} = V_{IL}$                                                                                                                                            | 3 V             |            |            | 190 |                  |           | 190 | Ω     |
|                   | rodicianos                                | (see Figure 1)                                                                                                                                                                          | 4.5 V           |            |            | 100 |                  |           | 100 |       |
|                   |                                           | I <sub>T</sub> = 2 mA,                                                                                                                                                                  | 2.3 V           |            |            | 600 |                  |           | 600 |       |
| r <sub>on(</sub>  | Peak on-state resistance                  | $V_I = V_{CC}$ or GND,                                                                                                                                                                  | 3 V             |            |            | 225 |                  |           | 225 | Ω     |
| p)                | resistance                                | $V_{INH} = V_{IL}$                                                                                                                                                                      | 4.5 V           |            |            | 125 |                  |           | 125 |       |
|                   | Difference in on-state                    | I <sub>T</sub> = 2 mA,                                                                                                                                                                  | 2.3 V           |            |            | 40  |                  |           | 40  |       |
| Δr <sub>o</sub>   | <sup>Δr</sup> o resistance between switch | $V_I = V_{CC}$ or GND,                                                                                                                                                                  | 3 V             |            |            | 30  |                  |           | 30  | Ω     |
| "                 |                                           | $V_{INH} = V_{IL}$                                                                                                                                                                      | 4.5 V           |            |            | 20  |                  |           | 20  |       |
| I                 | Control input current                     | V <sub>I</sub> = 5.5 V or GND                                                                                                                                                           | 0 V to<br>5.5 V |            |            | ±1  |                  |           | ±2  | μΑ    |
| I <sub>S(of</sub> | Off-state switch leakage current          | $\begin{aligned} & V_I = V_{CC} \text{ and } \\ & V_O = GND, \text{ or } \\ & V_I = GND \text{ and } \\ & V_O = V_{CC}, \\ & V_{INH} = V_{IH} \\ & (\text{see Figure 2}) \end{aligned}$ | 5.5 V           |            |            | ±1  |                  |           | ±2  | μА    |
| I <sub>S(o</sub>  | On-state switch leakage current           | $V_I = V_{CC}$ or GND,<br>$V_{INH} = V_{IL}$<br>(see Figure 3)                                                                                                                          | 5.5 V           |            |            | ±1  |                  |           | ±2  | μΑ    |
| $I_{CC}$          | Supply current                            | $V_I = V_{CC}$ or GND                                                                                                                                                                   | 5.5 V           |            |            | 20  |                  |           | 40  | μΑ    |

# 6.7 Switching Characteristics $V_{CC}$ = 3.3 V ± 0.3 V

over recommended operating free-air temperature range (unless otherwise noted)

| DA                  | DAMETER                | FROM     | то       | TEST                                     | TEST T <sub>A</sub> = -40 to 10 |     |     | $^{\circ}$ C $T_{A} = -40 \text{ to}$ |     | °C  | UNIT |
|---------------------|------------------------|----------|----------|------------------------------------------|---------------------------------|-----|-----|---------------------------------------|-----|-----|------|
| PA                  | RAMETER                | (INPUT)  | (OUTPUT  | CONDITIONS                               | MIN                             | TYP | MAX | MIN                                   | TYP | MAX | UNII |
| t <sub>PLH</sub>    | Propagation delay time | COM or Y | Y or COM | C <sub>L</sub> = 50 pF<br>(see Figure 4) |                                 |     | 12  |                                       |     | 14  | ns   |
| t <sub>PZH</sub>    | Enable delay time      | INH      | COM or Y | C <sub>L</sub> = 50 pF<br>(see Figure 5) |                                 |     | 25  |                                       |     | 25  | ns   |
| $t_{PHZ}$ $t_{PLZ}$ | Disable delay time     | INH      | COM or Y | C <sub>L</sub> = 50 pF<br>(see Figure 5) |                                 |     | 25  |                                       |     | 25  | ns   |

Copyright © 2003–2014, Texas Instruments Incorporated



## 6.8 Switching Characteristics $V_{CC} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range (unless otherwise noted)

|                  |                        |          | •        | J (                                      | ,                |            |     |                  |            |     |      |
|------------------|------------------------|----------|----------|------------------------------------------|------------------|------------|-----|------------------|------------|-----|------|
| DA.              | RAMETER                | FROM     | то       | TEST                                     | T <sub>A</sub> = | -40 to 105 | °C  | T <sub>A</sub> = | -40 to 125 | S°C | UNIT |
| FA               | KRAWIETEK              | (INPUT)  | (OUTPUT  | CONDITIONS                               | MIN              | TYP        | MAX | MIN              | TYP        | MAX | UNIT |
| t <sub>PLH</sub> | Propagation delay time | COM or Y | Y or COM | C <sub>L</sub> = 50 pF<br>(see Figure 4) |                  |            | 8   |                  |            | 10  | ns   |
| t <sub>PZH</sub> | Enable delay time      | INH      | COM or Y | C <sub>L</sub> = 50 pF<br>(see Figure 5) |                  |            | 18  |                  |            | 18  | ns   |
| t <sub>PHZ</sub> | Disable delay time     | INH      | COM or Y | C <sub>L</sub> = 50 pF<br>(see Figure 5) |                  |            | 18  |                  |            | 18  | ns   |

## 6.9 Analog Switch Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER                          | FROM       | то       | TEST CONF                                                                               | TEST CONDITIONS           |                 | T <sub>A</sub> = 25°C |      |     | UNIT |  |
|------------------------------------|------------|----------|-----------------------------------------------------------------------------------------|---------------------------|-----------------|-----------------------|------|-----|------|--|
| PARAMETER                          | (INPUT)    | (OUTPUT) | TEST CONL                                                                               | DITIONS                   | V <sub>CC</sub> | MIN                   | TYP  | MAX | UNIT |  |
|                                    |            |          | $C_L = 50 \text{ pF},$                                                                  |                           | 2.3 V           |                       | 30   |     |      |  |
| Frequency response (switch on)     | COM or Y   | Y or COM | $R_L = 600 \Omega$ ,<br>$f_{in} = 1 MHz$ (sine wa                                       | ave) (1)                  | 3 V             |                       | 35   |     | MHz  |  |
| (SWIGH OH)                         |            |          | (see Figure 6)                                                                          | 140)                      | 4.5 V           |                       | 50   |     |      |  |
| Crosstalk                          |            |          | $C_L = 50 \text{ pF},$                                                                  |                           | 2.3 V           |                       | -45  |     |      |  |
| (between any                       | COM or Y   | Y or COM | $R_L = 600 \Omega$ ,<br>$f_{in} = 1 \text{ MHz (sine wave)}$                            |                           | 3 V             |                       | -45  |     | dB   |  |
| switches))                         |            |          | (seeFigure 7)                                                                           |                           | 4.5 V           |                       | -45  |     |      |  |
| Crosstalk                          |            |          | $C_L = 50 \text{ pF},$<br>$R_L = 600 \Omega,$<br>$f_{in} = 1 \text{ MHz (square wave)}$ |                           | 2.3 V           |                       | 20   |     |      |  |
| Crosstalk (control input to signal | INH COM    | COM or Y |                                                                                         |                           | 3 V             |                       | 35   |     | mV   |  |
| output)                            |            |          | (see Figure 8)                                                                          | 4.5 V                     |                 | 65                    |      |     |      |  |
| Feedthrough                        |            |          | $C_L = 50 \text{ pF},$                                                                  |                           | 2.3 V           |                       | -45  |     |      |  |
| attenuation                        | COM or Y   | Y or COM | $R_L = 600 \Omega,$<br>$f_{in} = 1 \text{ MHz}^{(2)}$                                   | $R_{L} = 600 \Omega,$     |                 |                       | -45  |     | dB   |  |
| (switch off)                       |            |          | (see Figure 9)                                                                          | 4.5 V                     |                 | -45                   |      |     |      |  |
|                                    |            |          | $C_L = 50 \text{ pF},$                                                                  | V <sub>I</sub> = 2 Vp-p   | 2.3 V           |                       | 0.1% |     |      |  |
| Sine-wave distortion               | COM or Y   | Y or COM | $R_L = 10 \text{ k}\Omega$ ,                                                            | V <sub>I</sub> = 2.5 Vp-p | 3 V             |                       | 0.1% |     |      |  |
| Sine-wave distortion               | COIVI OI 1 | 1 of COM | f <sub>in</sub> = 1 kHz (sine<br>wave)<br>(see Figure 10)                               | V <sub>I</sub> = 4 Vp-p   | 4.5 V           |                       | 0.1% |     |      |  |

 <sup>(1)</sup> Adjust f<sub>in</sub> voltage to obtain 0-dBm output. Increase fin frequency until dB meter reads -3 dB.
 (2) Adjust f<sub>in</sub> voltage to obtain 0-dBm input.

Submit Documentation Feedback

Copyright © 2003–2014, Texas Instruments Incorporated



#### 7 Parameter Measurement Information

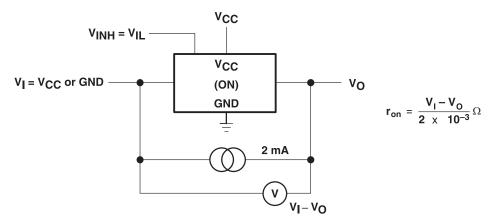
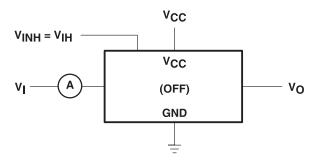




Figure 1. On-State Resistance Test Circuit



Condition 1:  $V_I = 0$ ,  $V_O = V_{CC}$ Condition 2:  $V_I = V_{CC}$ ,  $V_O = 0$ 

Figure 2. Off-State Switch Leakage-Current Test Circuit

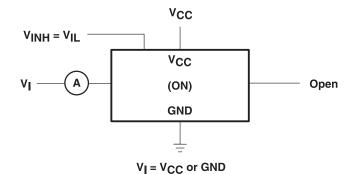
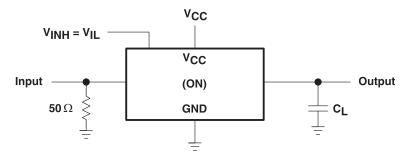
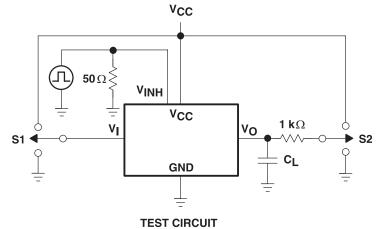
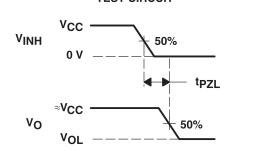
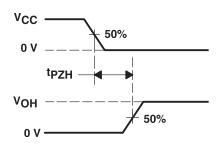
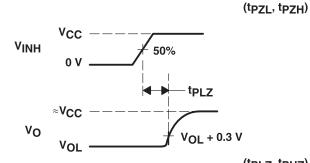


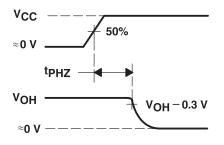

Figure 3. On-State Switch Leakage-Current Test Circuit



Figure 4. Propagation Delay Time, Signal Input to Signal Output

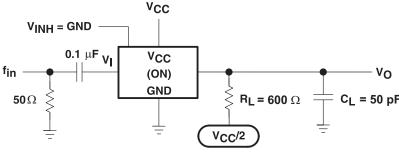




## **Parameter Measurement Information (continued)**




| TEST                               | S1              | S2              |
|------------------------------------|-----------------|-----------------|
| t <sub>PLZ</sub> /t <sub>PZL</sub> | GND             | V <sub>CC</sub> |
| t <sub>PHZ</sub> /t <sub>PZH</sub> | V <sub>CC</sub> | GND             |










(t<sub>PLZ</sub>, t<sub>PHZ</sub>)
VOLTAGE WAVEFORMS

Figure 5. Switching Time (t<sub>PZL</sub>, t<sub>PLZ</sub>, t<sub>PZH</sub>, t<sub>PHZ</sub>), Control to Signal Output



NOTE A: fin is a sine wave.

Figure 6. Frequency Response (Switch On)



## **Parameter Measurement Information (continued)**

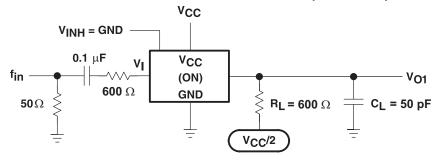





Figure 7. Crosstalk Between Any Two Switches

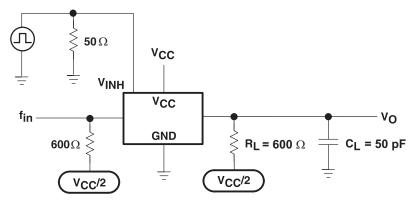



Figure 8. Crosstalk Between Control Input and Switch Output

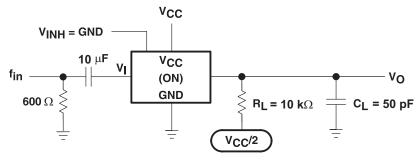



Figure 9. Feedthrough Attenuation (Switch Off)



# **Parameter Measurement Information (continued)**

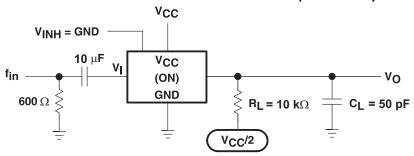
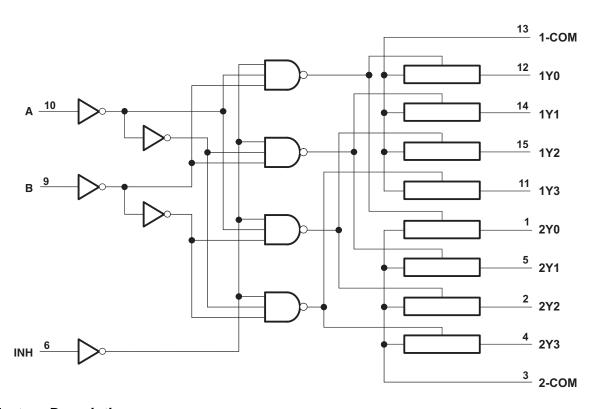



Figure 10. Sine-Wave Distortion




#### 8 Detailed Description

#### 8.1 Overview

This device is a dual 4-channel analog multiplexer. A multiplexer is often used when several signals need to share the same device or resource. This device allows the selection of one of these signals at a time for analysis or propagation.

#### 8.2 Functional Block Diagram



#### 8.3 Feature Description

This device contains 2 separate 4-channel multiplexers for use in a variety of applications. The 4-channel multiplexers can also be configured as demultiplexers by using the COM pins as inputs and the 1Yx or 2Yx pins as outputs. This device is qualified for automotive applications and has an extended temperature range of -40C to 125C (maximum depends on package type).

#### 8.4 Device Functional Modes

**Table 1. Function Table** 

|     | INPUTS | ON |          |
|-----|--------|----|----------|
| INH | В      | Α  | CHANNEL  |
| L   | L      | L  | 1Y0, 2Y0 |
| L   | L      | Н  | 1Y1, 2Y1 |
| L   | Н      | L  | 1Y2, 2Y2 |
| L   | Н      | Н  | 1Y3, 2Y3 |
| Н   | Χ      | X  | None     |

Copyright © 2003–2014, Texas Instruments Incorporated



### 9 Application and Implementation

#### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

#### 9.1 Application Information

A multiplexer is used in applications where multiple signals share a resource. In the example below, several different sensors are connected to the analog-to-digital converter (ADC) of a microcontroller (MCU).

#### 9.2 Typical Application

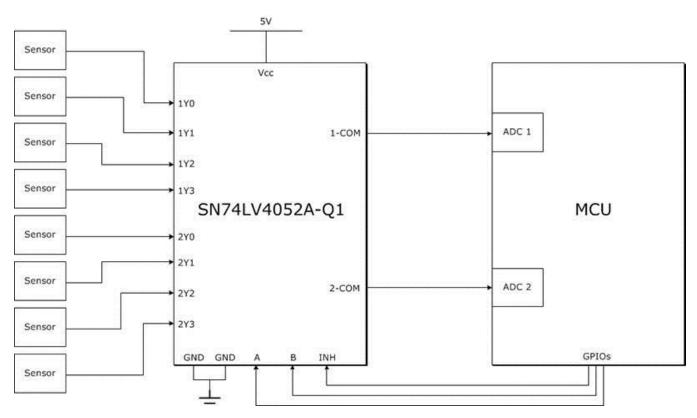



Figure 11. Typical Application Schematic

#### 9.2.1 Design Requirements

Normally processing 8 different analog signals would require 8 separate ADCs, but this figure shows how to achieve this using only 2 ADCs and 3 GPIOs (general purpose input/outputs).

#### 9.2.2 Detailed Design Procedure

To design with the SN74LV4052A-Q1, a stable input voltage between 2V (see *Recommended Operating Conditions*<sup>(1)</sup> for details) and 5.5 V must be available. Another important design consideration would be the characteristics of the signal that is being multiplexed to make sure no important information is lost due to timing or voltage level incompatibility with this device.

(1) Hold all unused inputs of the device at V<sub>CC</sub> or GND to ensure proper device operation. See the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.



### 10 Power Supply Recommendations

Most systems have a common 3.3 V or 5 V rail that may be used to supply the  $V_{CC}$  pin of this device. If this is not available, a Switch-Mode-Power-Supply (SMPS) or a Linear Dropout Regulator (LDO) may be used to supply this device from a higher voltage rail.

### 11 Layout

#### 11.1 Layout Guidelines

In general, it is best to keep signal lines as short and as straight as possible. Incorporation of microstrip or stripline techniques is also recommended when signal lines are greater than 1 inch in length. These traces must be designed with a characteristic impedance of either 50  $\Omega$  or 75  $\Omega$ ,as required by the application. Be careful placing this device too close to high voltage switching components, as they may cause interference.

#### 11.2 Layout Example

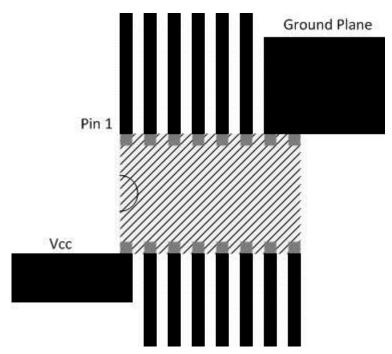



Figure 12. Layout Example Schematic



### 12 Device and Documentation Support

#### 12.1 Trademarks

All trademarks are the property of their respective owners.

#### 12.2 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

#### 12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

## 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.





31-Jul-2014

#### **PACKAGING INFORMATION**

| Orderable Device  | Status | Package Type | _       | Pins | _    | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | Device Marking | Samples |
|-------------------|--------|--------------|---------|------|------|----------------------------|------------------|---------------------|--------------|----------------|---------|
|                   | (1)    |              | Drawing |      | Qty  | (2)                        | (6)              | (3)                 |              | (4/5)          |         |
| CLV4052ATPWRG4Q1  | ACTIVE | TSSOP        | PW      | 16   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 105   | L4052AQ        | Samples |
| SN74LV4052AQPWRQ1 | ACTIVE | TSSOP        | PW      | 16   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 125   | 4052AQ1        | Samples |
| SN74LV4052ATDRQ1  | ACTIVE | SOIC         | D       | 16   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 105   | L4052AQ        | Samples |
| SN74LV4052ATPWRQ1 | ACTIVE | TSSOP        | PW      | 16   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-3-260C-168 HR | -40 to 105   | L4052AQ        | Samples |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.



## **PACKAGE OPTION ADDENDUM**

31-Jul-2014

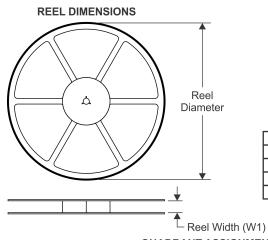
**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

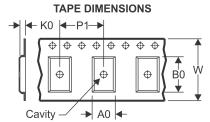
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF SN74LV4052A-Q1:

Catalog: SN74LV4052A

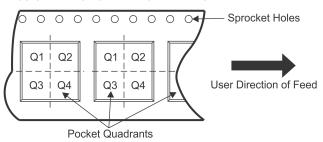
■ Enhanced Product: SN74LV4052A-EP


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications

## PACKAGE MATERIALS INFORMATION

www.ti.com 31-Jul-2014


## TAPE AND REEL INFORMATION





| _ |    |                                                           |
|---|----|-----------------------------------------------------------|
|   |    | Dimension designed to accommodate the component width     |
|   |    | Dimension designed to accommodate the component length    |
|   |    | Dimension designed to accommodate the component thickness |
|   | W  | Overall width of the carrier tape                         |
| Γ | P1 | Pitch between successive cavity centers                   |

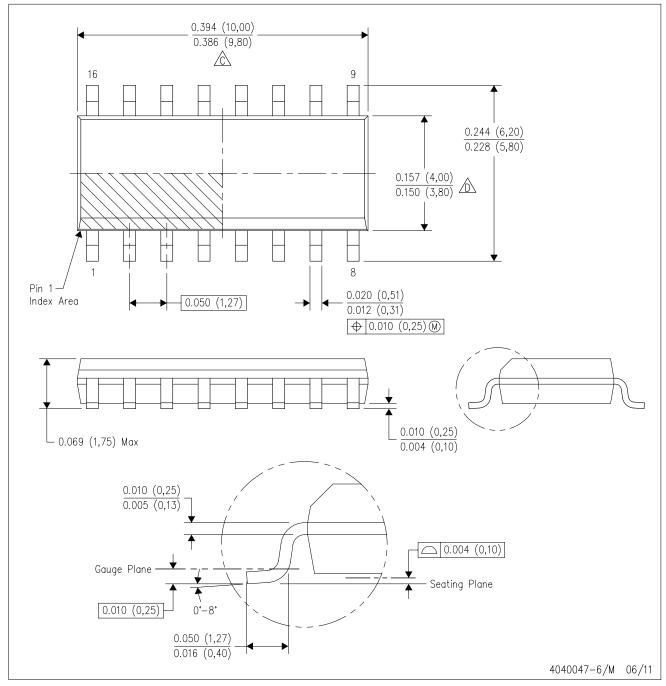
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



#### \*All dimensions are nominal

| Device            | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| CLV4052ATPWRG4Q1  | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| SN74LV4052AQPWRQ1 | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| SN74LV4052ATPWRQ1 | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |

www.ti.com 31-Jul-2014

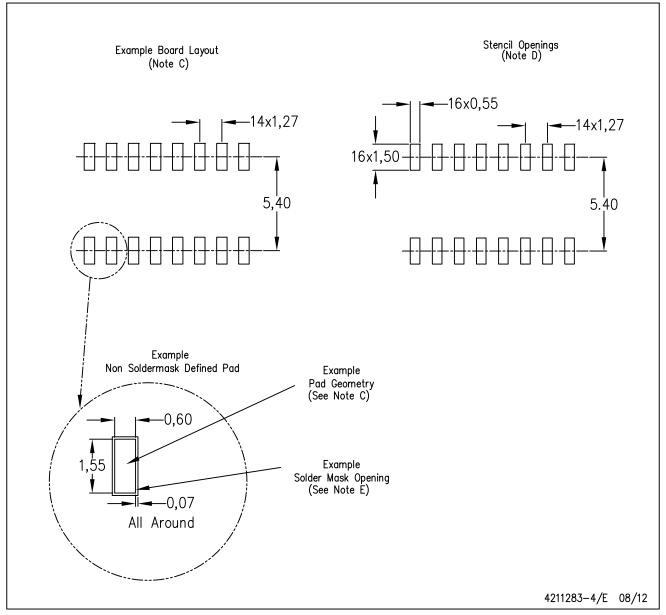



\*All dimensions are nominal

| 7 til difficiono di c fictima |              |                 |      |      |             |            |             |
|-------------------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| Device                        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
| CLV4052ATPWRG4Q1              | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |
| SN74LV4052AQPWRQ1             | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |
| SN74LV4052ATPWRQ1             | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |

# D (R-PDS0-G16)

## PLASTIC SMALL OUTLINE

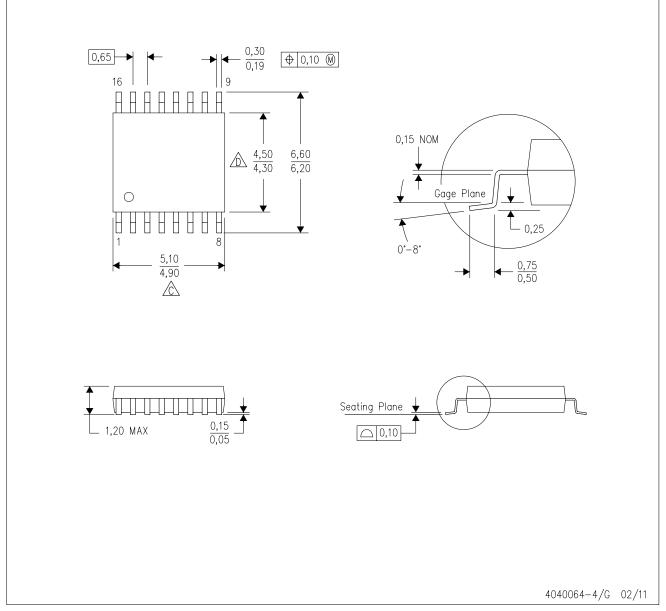



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



# D (R-PDSO-G16)

# PLASTIC SMALL OUTLINE

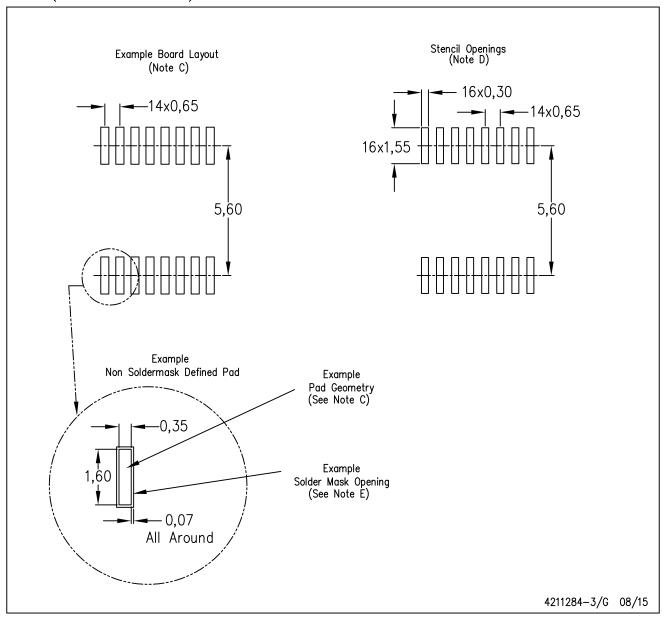



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



PW (R-PDSO-G16)

## PLASTIC SMALL OUTLINE




- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153



# PW (R-PDSO-G16)

# PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

#### **Products Applications**

logic.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security

Power Mgmt Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com

Microcontrollers www.ti.com/video microcontroller.ti.com Video and Imaging

www.ti-rfid.com

**OMAP Applications Processors TI E2E Community** www.ti.com/omap e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity