

SLUSAX1E - DECEMBER 2012-REVISED MARCH 2017

bq7718

bq7718 Overvoltage Protection for 2-Series to 5-Series Cell Li-Ion Batteries with Internal Delay Timer

1 Features

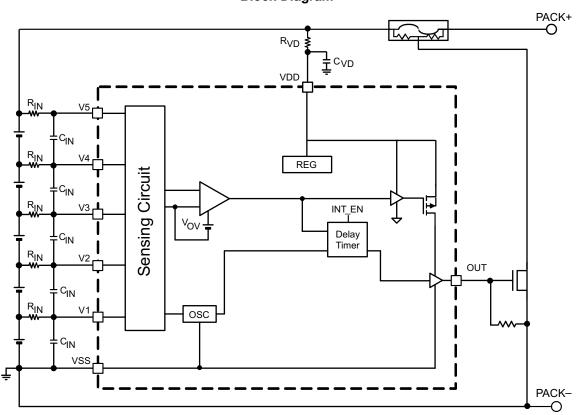
- 2-, 3-, 4-, and 5-Series Cell Overvoltage Protection
- Internal Delay Timer
- Fixed OVP Threshold
- High-Accuracy Overvoltage Protection: ± 10 mV
- Low Power Consumption I_{CC} ≈ 1 μA (V_{CELL(ALL)} < V_{PROTECT})
- Low Leakage Current Per Cell Input < 100 nA
- Small Package Footprint
 - 8-pin QFN (3.00 mm × 4.00 mm)

2 Applications

- · Protection in Li-Ion Battery Packs in:
 - Power Tools
 - UPS Battery Backup
 - Light Electric Vehicles (eBike, eScooter, Pedal Assist Bicycles)

3 Description

The bq7718xy family of products provides an overvoltage monitor and protector for Li-lon battery pack systems. Each cell is monitored independently for an overvoltage condition. For quicker production-line testing, the bq7718xy device provides a Customer Test Mode (CTM) with greatly reduced delay time.


In the bq7718xy device, an internal delay timer is initiated upon detection of an overvoltage condition on any cell. Upon expiration of the delay timer, the output is triggered into its active state (either high or low depending on the configuration).

Device Information Table(1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
bq771800	WSON (8)	3.00 mm × 4.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet and the Device Comparison Table.

Block Diagram

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

1	Features 1		8.3 Feature Description	11
2	Applications 1		8.4 Device Functional Modes	12
3	Description 1	9	Application and Implementation	13
4	Revision History2		9.1 Application Information	13
5	Device Comparison Table 4		9.2 Systems Examples	16
6	Pin Configuration and Functions 5	10	Power Supply Recommendations	16
7	Specifications6	11	Layout	17
•	7.1 Absolute Maximum Ratings 6		11.1 Layout Guidelines	17
	7.2 ESD Ratings		11.2 Layout Example	17
	7.3 Recommended Operating Conditions	12	Device and Documentation Support	18
	7.4 Thermal Information		12.1 Related Links	18
	7.5 DC Characteristics		12.2 Receiving Notification of Documentation Updat	es 18
	7.6 Timing Requirements		12.3 Community Resources	18
	7.7 Typical Characteristics9		12.4 Trademarks	18
8	Detailed Description 10		12.5 Electrostatic Discharge Caution	18
U	8.1 Overview		12.6 Glossary	18
	8.2 Functional Block Diagram 10	13	Mechanical, Packaging, and Orderable Information	

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

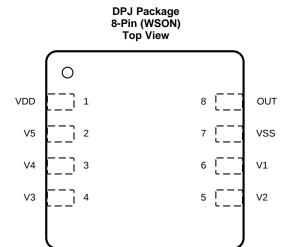
CI	hanges from Revision D (November 2014) to Revision E	Page
•	Changed the datasheet device number to bq7718	1
•	Added the Block Diagram image	1
•	Removed the Product Preview note from bq771806 in the Device Comparison Table	
•	Added bq771817 to Device Comparison Table	4
•	Replaced the pinout image in the Pin Configuration and Functions section	5
•	Deleted " Lead temperature (soldering, 10 s)" from the Absolute Maximum Ratings table	6
•	Changed the Handling Ratings table to ESD Ratings table	6
•	Removed the Product Preview note from bq771806 in the DC Characteristics table	7
•	Added bq771817 to V _{HYS} DC Characteristics	7
•	Added the Timing Requirements table	
•	Added the Feature Description section	
•	Added the Device Functional Modes section	12
•	Added the Power Supply Recommendations section	16
•	Added the Layout section	17
CI	hanges from Revision C (August 2014) to Revision D	Page
•	Added the bq771815 device to Production Data	4
•	Changed the Handling Ratings table	6

Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Changes from Revision B (October 2013) to Revision C	Page
Changed the data sheet format Added the bq771807 device to Production Data	
Changes from Revision A (September 2013) to Revision B	Page
Added the bq771809 device to Production Data	4
Changes from Original (December 2012) to Revision A	Page
Added the bq771808 device to Production Data	4

STRUMENTS


5 Device Comparison Table

T _A	Part Number	Package	Package Designator	OVP (V)	OV Hysteresis (V)	Output Delay	Output Drive	Tape and Reel (Large)	Tape and Reel (Small)								
	bq771800			4.300	0.300	4 s	CMOS Active High	bq771800DPJR	bq771800DPJT								
	bq771801			4.275	0.050	3 s	NCH Active Low, Open Drain	bq771801DPJR	bq771801DPJT								
	bq771802			4.225	0.300	1 s	NCH Active Low, Open Drain	bq771802DPJR	bq771802DPJT								
	bq771803			4.275	0.050	1 s	NCH Active Low, Open Drain	bq771803DPJR	bq771803DPJT								
	bq771804 ⁽¹⁾			4.225	0.300	3 s	CMOS Active High	bq771804DPJR	bq771804DPJT								
	bq771805 ⁽¹⁾			4.325	0.300	3 s	CMOS Active High	bq771805DPJR	bq771805DPJT								
	bq771806			4.350	0.300	3 s	CMOS Active High	bq771806DPJR	bq771806DPJT								
	bq771807			4.450	0.300	3 s	CMOS Active High	bq771807DPJR	bq771807DPJT								
	bq771808			4.200	0.050	1 s	NCH Active Low	bq771808DPJR	bq771808DPJT								
-40°C to 110°C	bq771809	8-Pin QFN	DPJ	4.200	0.050	1 s	CMOS Active High	bq771809DPJR	bq771809DPJT								
	bq771810 ⁽¹⁾			4.200	0.250	1 s	CMOS Active High	bq771810DPJR	bq771810DPJT								
	bq771811 ⁽¹⁾			4.225	0.050	1 s	CMOS Active High	bq771811DPJR	bq771811DPJT								
	bq771812 ⁽¹⁾			4.250	0.050	1 s	CMOS Active High	bq771812DPJR	bq771812DPJT								
	bq771813 ⁽¹⁾			4.250	0.050	1 s	CMOS Active High	bq771813DPJR	bq771813DPJT								
	bq771814 ⁽¹⁾			3.900	0.300	3 s	CMOS Active High	bq771814DPJR	bq771814DPJT								
	bq771815			4.225	0.050	1 s	NCH Active Low	bq771815DPJR	bq771815DPJT								
	bq771816 ⁽¹⁾	1		4.250	0.050	1 s	NCH Active Low	bq771816DPJR	bq771816DPJT								
	bq771817			4.275	0.050	1 s	CMOS Active High	bq771817DPJR	bq771817DPJR T								
	bq7718xy ⁽²⁾	-										3.850-4.650	0-0.300	1 s	NCH, Active Low, Open Drain	bq7718xyDPJR	bq7718xyDPJT

⁽¹⁾ Product Preview only.(2) Future option, contact TI.

6 Pin Configuration and Functions

Pin Functions

NO.	NAME	TYPE I/O	DESCRIPTION
1	VDD	Р	Power supply
2	V5	I	Sense input for positive voltage of the fifth cell from the bottom of the stack
3	V4	1	Sense input for positive voltage of the fourth cell from the bottom of the stack
4	V3	I	Sense input for positive voltage of the third cell from the bottom of the stack
5	V2	I	Sense input for positive voltage of the second cell from the bottom of the stack
6	V1	I	Sense input for positive voltage of the lowest cell in the stack
7	VSS	Р	Electrically connected to IC ground and negative terminal of the lowest cell in the stack
8	OUT	0	Output drive for overvoltage fault signal

Copyright © 2012–2017, Texas Instruments Incorporated

7 Specifications

7.1 Absolute Maximum Ratings

Over-operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply voltage range	VDD-VSS	-0.3	30	V
Input voltage range	V5–VSS or V4–VSS or V3–VSS or V2–VSS or V1–VSS	-0.3	30	V
Output voltage range	OUT-VSS	-0.3	30	V
Continuous total power dissipation, P _{TOT}		See Thermal Inform	nation	
Functional temperature		-40	110	°C
Storage temperature range, T _{STG}		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
\/ Boting	Electrostatio discharge	Human body model (HBM) ESD stress voltage ⁽¹⁾	±2000	V
v _(ESD) Rating	V _(ESD) Rating Electrostatic discharge	Charged device model (CDM) ESD stress voltage (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Over-operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Supply voltage, V _{DD} ⁽¹⁾		3	25	V
Input voltage range	V5–V4 or V4–V3 or V3–V2 or V2–V1 or V1–VSS	0	5	V
Operating ambient temperature range, T _A		-40	110	°C

⁽¹⁾ See Systems Examples.

7.4 Thermal Information

		bq7718xy	
	THERMAL METRIC ⁽¹⁾	DPJ (WSON)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	56.6	°C/W
$R_{\theta JCtop}$	Junction-to-case(top) thermal resistance	56.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	30.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	37.8	°C/W
$R_{\theta JCbot}$	Junction-to-case(bottom) thermal resistance	11.3	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: bq7718

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.5 DC Characteristics

Typical values stated where $T_A = 25^{\circ}C$ and $V_{DD} = 18$ V, MIN/MAX values stated where $T_A = -40^{\circ}C$ to 110°C and $V_{DD} = 3$ V to 25 V (unless otherwise noted).

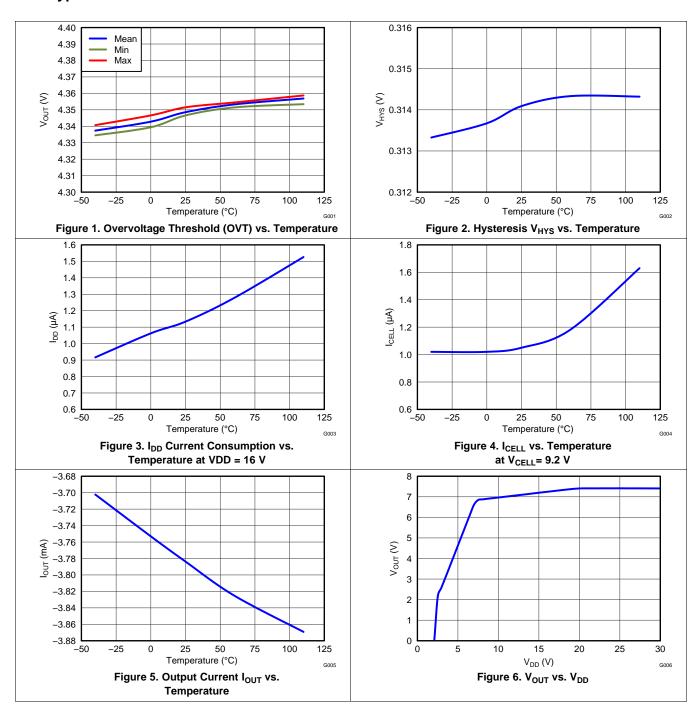
SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
Voltage Pro	otection Threshold VCx					
		bq771800		4.300		V
		bq771801		4.275		V
		bq771803		4.275		V
		bq771802		4.225		V
		bq771804 ⁽¹⁾		4.225		V
		bq771805 ⁽¹⁾		4.325		V
		bq771806		4.350		V
V _{OV}		bq771807		4.450		V
	V _(PROTECT) Overvoltage	bq771808		4.200		V
	Detection	bq771809		4.200		V
		bq771810 ⁽¹⁾		4.200		V
		bq771811 ⁽¹⁾		4.225		V
		bq771812 ⁽¹⁾		4.250		V
		bq771813 ⁽¹⁾		4.250		V
		bq771814 ⁽¹⁾		3.900		V
		bq771815		4.225		V
		bq771816 ⁽¹⁾		4.250		V
		bq771817		4.275		V
		bq771800	250	300	400	mV
		bq771801	0	50	100	mV
		bq771802	250	300	400	mV
		bq771803	0	50	100	mV
		bq771804 ⁽¹⁾	250	300	400	mV
		bq771805 ⁽¹⁾	250	300	400	mV
		bq771806	250	300	400	mV
		bq771807	250	300	400	mV
		bq771808	0	50	100	mV
V_{HYS}	OV Detection Hysteresis	bq771809	0	50	100	mV
		bq771810 ⁽¹⁾	200	250	250	mV
		bq771811 ⁽¹⁾	0	50	100	mV
		bq771812 ⁽¹⁾	0	50	100	mV
		bq771813 ⁽¹⁾	0	50	100	mV
		bq771814 ⁽¹⁾	250	300	400	mV
		bq771815	0	50	100	mV
		bq771816 ⁽¹⁾	0	50	100	mV
		bq771817	0	50	100	mV
V _{OA}	OV Detection Accuracy	T _A = 25°C	-10		10	mV
JA.		T _A = -40°C	-40		44	mV
	OV Detection Accuracy Across	T _A = 0°C	-20		20	mV
$V_{OADRIFT}$	Temperature	T _A = 60°C	-24		24	mV
		T _A = 110°C	-54		54	mV

⁽¹⁾ Product Preview only.

DC Characteristics (continued)

Typical values stated where $T_A = 25^{\circ}C$ and $V_{DD} = 18$ V, MIN/MAX values stated where $T_A = -40^{\circ}C$ to 110°C and $V_{DD} = 3$ V to 25 V (unless otherwise noted).

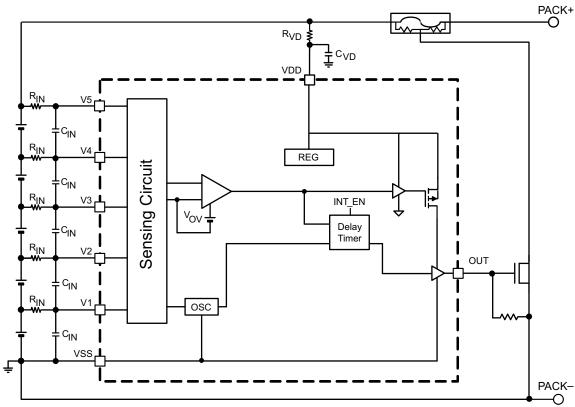
SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
Supply and	Leakage Current					
I _{CC}	Supply Current	(V5-V4) = (V4-V3) = (V3-V2) = (V2-V1) = (V1-VSS) = 4 V (See Figure 8.)		1	2	μA
I _{IN}	Input Current at Vx Pins	(V5-V4) = (V4-V3) = (V3-V2) = (V2-V1) = (V1-VSS) = 4 V (See Figure 8.)	-0.1		0.1	μΑ
Output Driv	e OUT, CMOS Active HIGH Vers	ions Only				
		(V5–V4), (V4–V3), (V3–V2), (V2–V1), or (V1–VSS) > V _{OV} , VDD = 18 V, I _{OH} = 100 μA	6			V
V _{OUT1}	Output Drive Voltage, Active High	If three of four cells are short circuited and only one cell remains powered and > V_{OV} , VDD = Vx (cell voltage), I_{OH} = 100 μA		VDD - 0.3		V
		$(V5-V4)$, $(V4-V3)$, $(V3-V2)$, $(V2-V1)$, and $(V1-VSS) < V_{OV}$, $VDD = 18$ V, $I_{OL} = 100$ μA measured into pin		250	400	mV
I _{OUTH1}	OUT Source Current (during OV)	(V5-V4), (V4-V3), (V3-V2), (V2-V1), or (V1-VSS) > V _{OV} , VDD = 18 V. OUT = 0 V. Measured out of OUT pin			4.5	mA
I _{OUTL1}	OUT Sink Current (no OV)	(V5–V4), (V4–V3), (V3–V2), (V2–V1), and (V1–VSS) < V _{OV} , VDD = 18 V, OUT = VDD. Measured into OUT pin	0.5		14	mA
Output Driv	e OUT, NCH Open Drain Active	LOW Versions Only				
V _{OUT2}	Output Drive Voltage, Active Low	$(V5-V4)$, $(V4-V3)$, $(V3-V2)$, $(V2-V1)$, or $(V1-VSS) > V_{OV}$, VDD = 18 V, I_{OL} = 100 μA measured into OUT pin		250	400	mV
I _{OUTH2}	OUT Sink Current (during OV)	$(V5-V4)$, $(V4-V3)$, $(V3-V2)$, $(V2-V1)$, or $(V1-VSS) > V_{OV}$, $VDD = 18 \ V$. OUT = VDD. Measured into OUT pin	0.5		14	mA
I _{OUTL2}	OUT Source Current (no OV)	(V5–V4), (V4–V3), (V3–V2), (V2–V1), and (V1–VSS) < V _{OV} , VDD = 18 V. OUT = VDD. Measured out of OUT pin			100	nA


7.6 Timing Requirements

	goquoo		MIN	NOM	MAX	UNIT
Delay Time	er					
	OV Delay Time	bq771800	3.2	4	4.8	s
		bq771801, bq771807	2.4	3	3.6	s
t _{DELAY}		bq771802, bq771803, bq771815	0.8	1	1.2	s
		Preview option only. Contact TI.	4.4	5.5	6.6	s
X _{CTMDELAY}	Fault Detection Delay Time during Customer Test Mode	See Customer Test Mode.		15		ms

Product Folder Links: bq7718

7.7 Typical Characteristics


8 Detailed Description

8.1 Overview

In the bq7718xy family of devices, each cell is monitored independently and an external delay timer is initiated if an overvoltage condition is detected on any cell.

For quicker production-line testing, the device provides a Customer Test Mode with greatly reduced delay time.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

In the bq7718xy device, each cell is monitored independently. Overvoltage is detected by comparing the actual cell voltage to a protection voltage reference, V_{OV} . If any cell voltage exceeds the programmed OV value, a timer circuit is activated. When the timer expires, the OUT pin goes from inactive to active state.

For NCH Open Drain Active Low configurations, the OUT pin pulls down to VSS when active (OV present) and is high impedance when inactive (no OV).

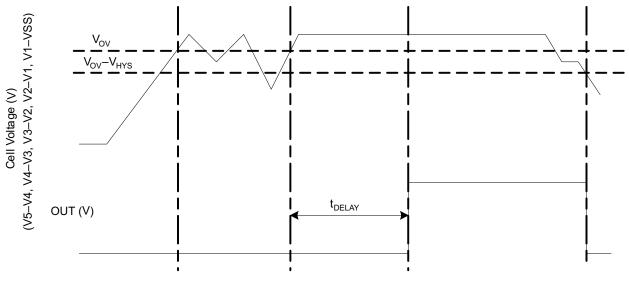


Figure 7. Timing for Overvoltage Sensing

8.3.1 Sense Positive Input for Vx

This is an input to sense each single battery cell voltage. A series resistor and a capacitor across the cell for each input is required for noise filtering and stable voltage monitoring.

8.3.2 Output Drive, OUT

This pin serves as the fault signal output, and may be ordered in either active HIGH or LOW options.

8.3.3 Supply Input, VDD

This pin is the unregulated input power source for the IC. A series resistor is connected to limit the current, and a capacitor is connected to ground for noise filtering.

Copyright © 2012–2017, Texas Instruments Incorporated

8.4 Device Functional Modes

8.4.1 Normal Mode

When all of the cell voltages are below the overvoltage threshold, V_{OV} , the device operates in Normal mode. The device monitors the differential cell voltages connected across (V1 – VSS), (V2 – V1), (V3 – V2), (V4 – V3), and (VC4 – VC5). The OUT pin is inactive and if configured:

The OUT pin is inactive and if configured:

- Active high is low.
- Active low is being externally pulled up and is an open drain.

8.4.2 Overvoltage Mode

Overvoltage mode is detected if any of the cell voltages exceeds the overvoltage threshold, V_{OV} for configured OV delay time. The OUT pin is activated after a delay time set by the capacitance in the CD pin. The OUT pin will either pull high internally, if configured as active high, or will be pulled low internally, if configured as active low. When all of the cell voltages fall below the $(V_{OV} - V_{HYS})$, the device returns to NORMAL mode

8.4.3 Customer Test Mode

Customer Test Mode (CTM) helps to reduce test time for checking the overvoltage delay timer parameter once the circuit is implemented in the battery pack. To enter CTM, VDD should be set to at least 10 V higher than V5 (see Figure 8). The delay timer is greater than 10 ms, but considerably shorter than the timer delay in normal operation. To exit Customer Test Mode, remove the VDD to a V5 voltage differential of 10 V so that the decrease in this value automatically causes an exit.

CAUTION

Avoid exceeding any Absolute Maximum Voltages on any pins when placing the part into Customer Test Mode. Also avoid exceeding Absolute Maximum Voltages for the individual cell voltages (V5–V4), (V4–V3), (V4–V3), (V3–V2), (V2–V1), and (V1–VSS). Stressing the pins beyond the rated limits may cause permanent damage to the device.

Figure 8 shows the timing for the Customer Test Mode.

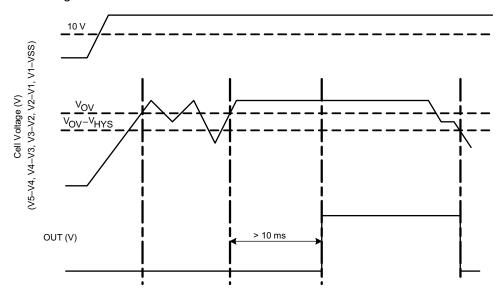
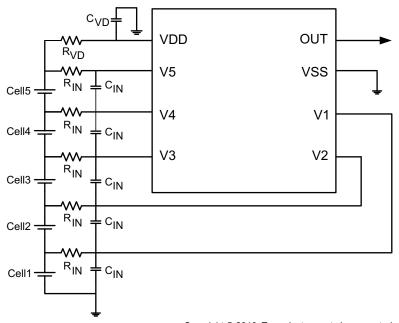


Figure 8. Timing for Customer Test Mode


9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

In the case of an Open Drain Active Low configuration, an external pull-up resistor is required on the OUT pin. Changes to the ranges stated in Table 1 will impact the accuracy of the cell measurements.

Copyright © 2016, Texas Instruments Incorporated

Figure 9. Application Configuration

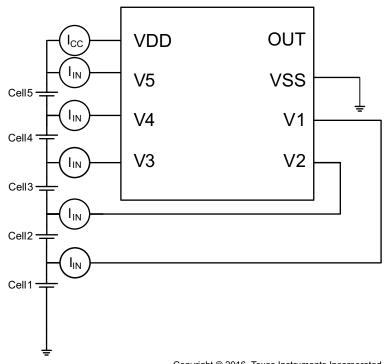
9.1.1 Design Requirements

Changes to the ranges stated in Table 1 will impact the accuracy of the cell measurements. Figure 9 shows each external component.

Table 1. Parameters

PARAMETER	EXTERNAL COMPONENT	MIN	NOM	MAX	UNIT
Voltage monitor filter resistance	R _{IN}	900	1000	1100	Ω
Voltage monitor filter capacitance	C _{IN}	0.01		0.1	μF
Supply voltage filter resistance	R _{VD}	100		1K	Ω
Supply voltage filter capacitance	C_VD		0.1		μF
CD external delay capacitance			0.1	1	μF
OUT Open drain version pull-up resistance to PACK+			100		kΩ

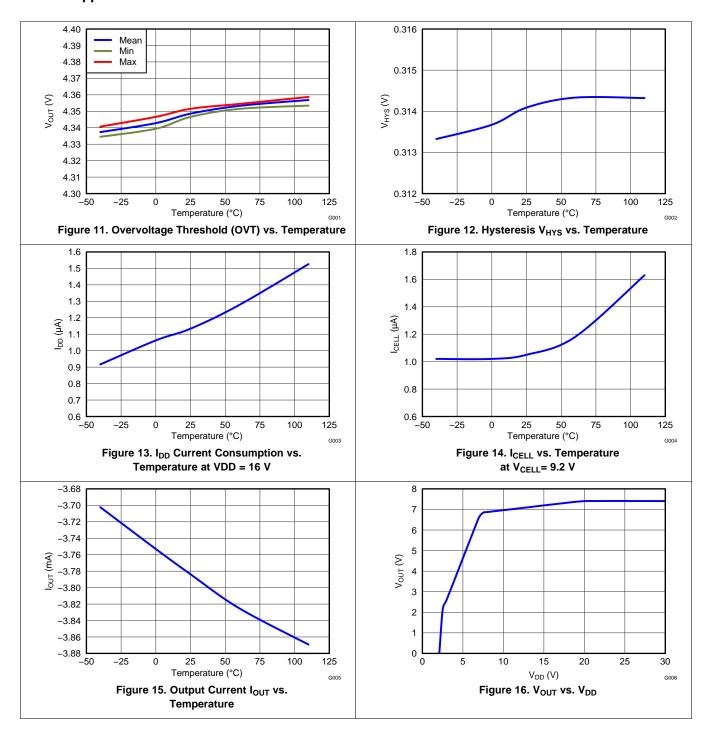
NOTE


The device is calibrated using an R_{IN} value = 1 $k\Omega.$ Using a value other than this recommended value changes the accuracy of the cell voltage measurements and V_{OV} trigger level.

Copyright © 2012–2017, Texas Instruments Incorporated

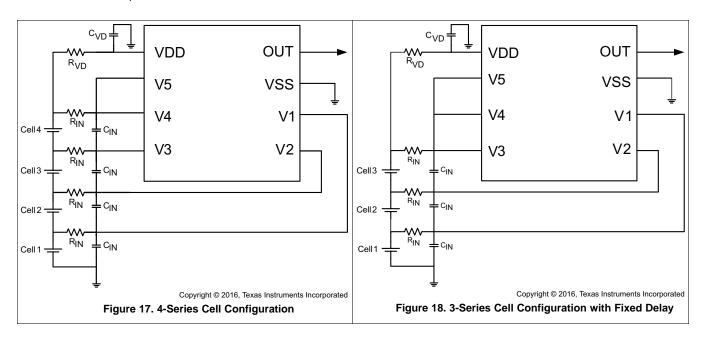
9.1.2 Detailed Design Procedure

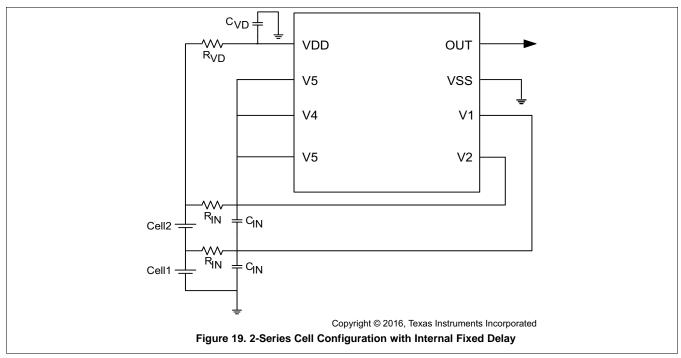
Figure 10 shows the measurement for current consumption for the product for both VDD and Vx.



Copyright © 2016, Texas Instruments Incorporated

Figure 10. Configuration for IC Current Consumption Test


9.1.2.1 Application Curves



9.2 Systems Examples

In these application examples, an external pull-up resistor is required on the OUT pin to configure for an Open Drain Active Low operation.

10 Power Supply Recommendations

The maximum power of this device is 25 V on VDD.

11 Layout

11.1 Layout Guidelines

- Ensure the RC filters for the V1 and VDD pins are placed as close as possible to the target terminal.
- The VSS pin should be routed to the CELL

 terminal.

11.2 Layout Example

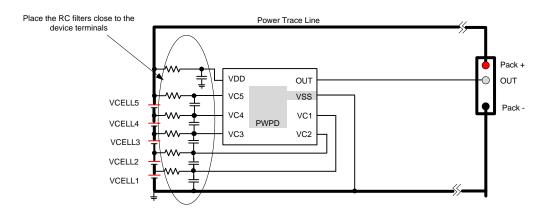


Figure 20. Example Layout

12 Device and Documentation Support

12.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

Table 2. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
bq7718	Click here	Click here	Click here	Click here	Click here
bq771800	Click here	Click here	Click here	Click here	Click here
bq771801	Click here	Click here	Click here	Click here	Click here
bq771802	Click here	Click here	Click here	Click here	Click here
bq771803	Click here	Click here	Click here	Click here	Click here
bq771806	Click here	Click here	Click here	Click here	Click here
bq771807	Click here	Click here	Click here	Click here	Click here
bq771808	Click here	Click here	Click here	Click here	Click here
bq771809	Click here	Click here	Click here	Click here	Click here
bq771815	Click here	Click here	Click here	Click here	Click here
bq771817	Click here	Click here	Click here	Click here	Click here

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

Product Folder Links: bq7718

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: bq7718

11-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
BQ771800DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771800	Samples
BQ771800DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771800	Samples
BQ771801DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771801	Samples
BQ771801DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771801	Samples
BQ771802DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771802	Samples
BQ771802DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771802	Samples
BQ771803DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771803	Samples
BQ771803DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771803	Samples
BQ771806DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771806	Samples
BQ771806DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771806	Samples
BQ771807DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771807	Samples
BQ771807DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771807	Samples
BQ771808DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771808	Samples
BQ771808DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771808	Samples
BQ771809DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771809	Samples
BQ771809DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771809	Samples
BQ771815DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771815	Samples

PACKAGE OPTION ADDENDUM

11-Apr-2017

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
BQ771815DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771815	Samples
BQ771817DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771817	Samples
BQ771817DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	771817	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

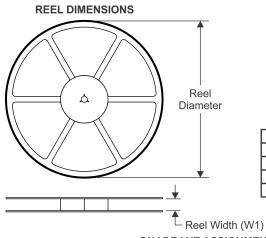
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

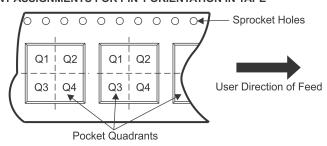
PACKAGE OPTION ADDENDUM


11-Apr-2017

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 6-Apr-2017


TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ771800DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771800DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771801DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771801DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771802DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771802DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771803DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771803DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771806DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771806DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771807DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771807DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771808DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771808DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771809DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771809DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771815DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771815DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2

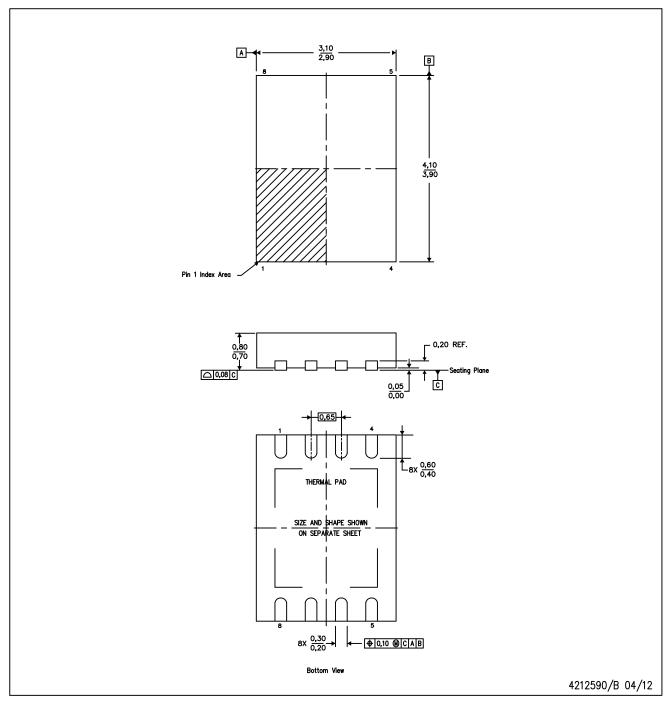
PACKAGE MATERIALS INFORMATION

www.ti.com 6-Apr-2017

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ771817DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771817DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ771800DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771800DPJT	WSON	DPJ	8	250	210.0	185.0	35.0
BQ771801DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771801DPJT	WSON	DPJ	8	250	210.0	185.0	35.0
BQ771802DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771802DPJT	WSON	DPJ	8	250	210.0	185.0	35.0
BQ771803DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771803DPJT	WSON	DPJ	8	250	210.0	185.0	35.0
BQ771806DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771806DPJT	WSON	DPJ	8	250	210.0	185.0	35.0
BQ771807DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771807DPJT	WSON	DPJ	8	250	210.0	185.0	35.0
BQ771808DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771808DPJT	WSON	DPJ	8	250	210.0	185.0	35.0
BQ771809DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0


PACKAGE MATERIALS INFORMATION

www.ti.com 6-Apr-2017

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ771809DPJT	WSON	DPJ	8	250	210.0	185.0	35.0
BQ771815DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771815DPJT	WSON	DPJ	8	250	210.0	185.0	35.0
BQ771817DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771817DPJT	WSON	DPJ	8	250	210.0	185.0	35.0

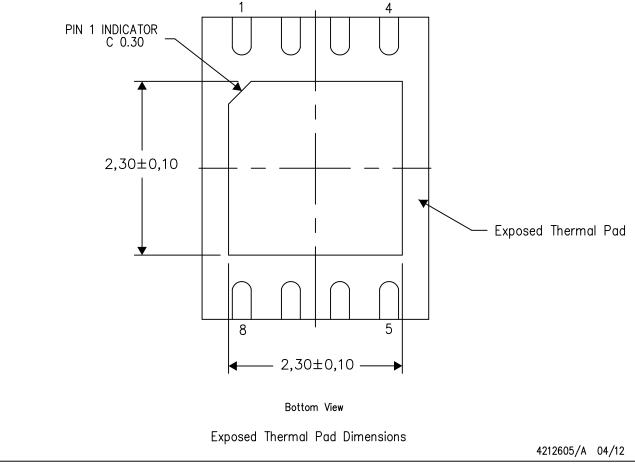
DPJ (R-PWSON-N8)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

DPJ (R-PWSON-N8)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.