Bipolar Transistor (-)100V, (-)4A, Low VCE(sat), (PNP)NPN Single

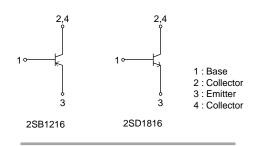
ON Semiconductor®

www.onsemi.com

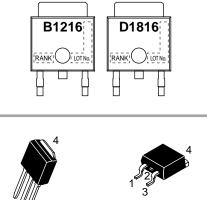
Features

- Low Collector to Emitter Saturation Voltage
- Small and Slim Package Facilitating Compactness of Sets
- High fT
- Good Linearity of hFE
- Fast Switching Time

Typical Applications


- Suitable for Relay Drivers
- High Speed Inverters
- Converters
- Other General High Current Switching Applications

SPECIFICATIONS (): 2SB1216 **ABSOLUTE MAXIMUM RATING** at Ta = 25°C (Note 1)


Parameter		Symbol	Value	Unit		
Collector to Base Voltage		VCBO	(–) 120	V		
Collector to Emitter Voltage		VCEO	(–) 100	V		
Emitter to Base Voltage		VEBO	(–) 6	V		
Collector Current		IC	(-) 4	А		
Collector Current (Pulse)		ICP	(–) 8	А		
Collector Dissipation		De	1	W		
Collector Dissipation	Tc=25°C	PC	20	W		
Junction Temperature		Tj	150	°C		
Storage Temperature		Tstg	-55 to +150	°C		

Note 1 : Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

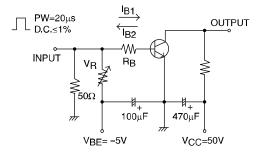
MARKING

DPAK / TP-FA

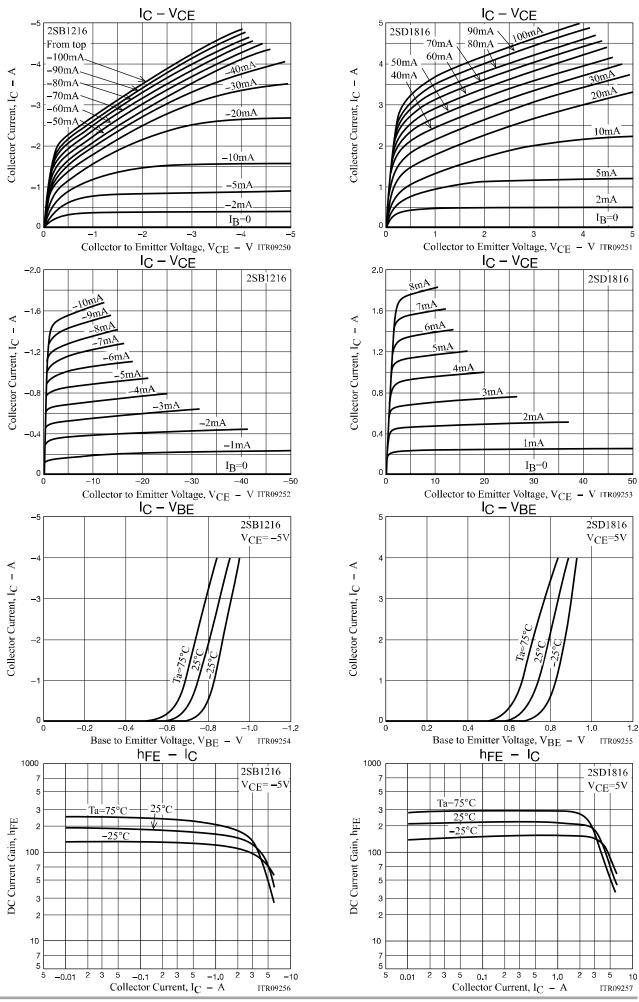
ORDERING INFORMATION See detailed ordering and shipping information on page 7 of this data sheet.

IPAK / TP

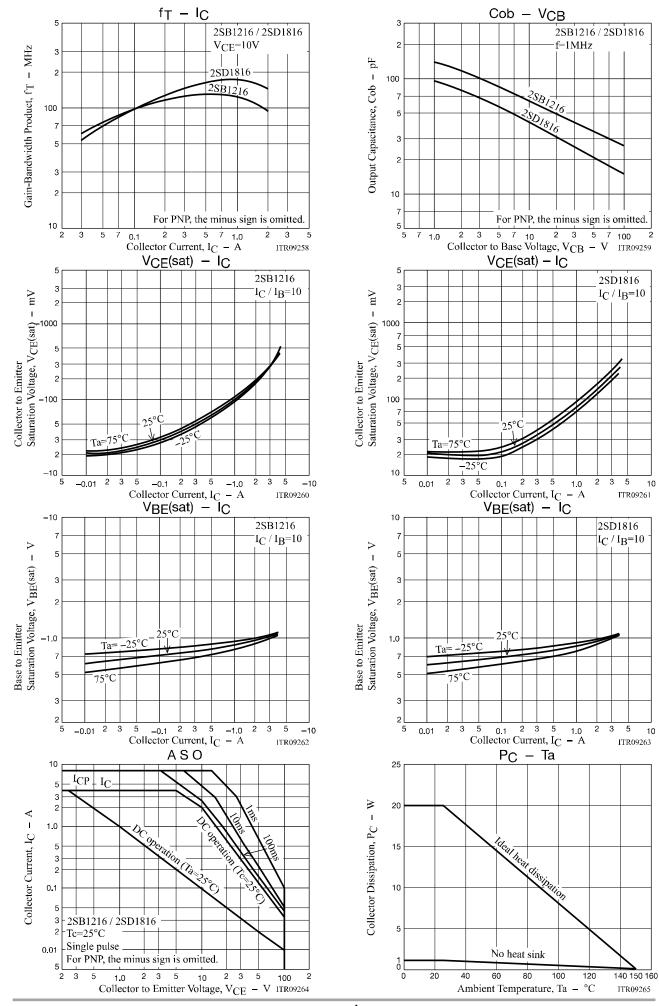
ELECTRICAL CHARACTERISTICS at $Ta = 25^{\circ}C$ (Note 2)


Parameter	Current al	Conditions	Value			Linit
	Symbol	Conditions	min	typ	max	Unit
Collector Cutoff Current	ICBO	V _{CB} =(-)100V, I _E =0A			(–)1	μA
Emitter Cutoff Current	IEBO	V _{EB} =(-)4V, I _C =0A			(–)1	μA
DC Current Gain	hFE1	VCE=(-)5V, IC=(-)0.5A	140*		400*	
	hFE2	VCE=(-)5V,IC=(-)3A	40			
Gain-Bandwidth Product	fT	V _{CE} =(-)10V, I _C =(-)0.5A		(130) 180		MHz
Output Capacitance	Cob	V _{CB} =(-)10V, f=1MHz		(65) 40		pF
Collector to Emitter Saturation Voltage	V _{CE} (sat)	IC=(-)2A, IB=(-)0.2A		(–200) 150	(500) 400	mV
Base to Emitter Saturation Voltage	V _{BE} (sat)	IC=(-)2A, IB=(-)0.2A		(–) 0.9	(–) 1.2	V
Collector to Base Breakdown Voltage	V(BR)CBO	I _C =(-)10μΑ, I _E =0Α	(–)120			V
Collector to Emitter Breakdown Voltage	V(BR)CEO	IC=(−)1mA, RBE=∞	(–)100			V
Emitter to Base Breakdown Voltage	V(BR)EBO	I _E =(–)10μΑ, I _C =0Α	(–) 6			V
Turn-On Time	ton a state t			100		ns
Storage Time	t _{stg}	See specified Test Circuit		(800) 900		ns
Fall Time	tf			50		ns

Note 2 : Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

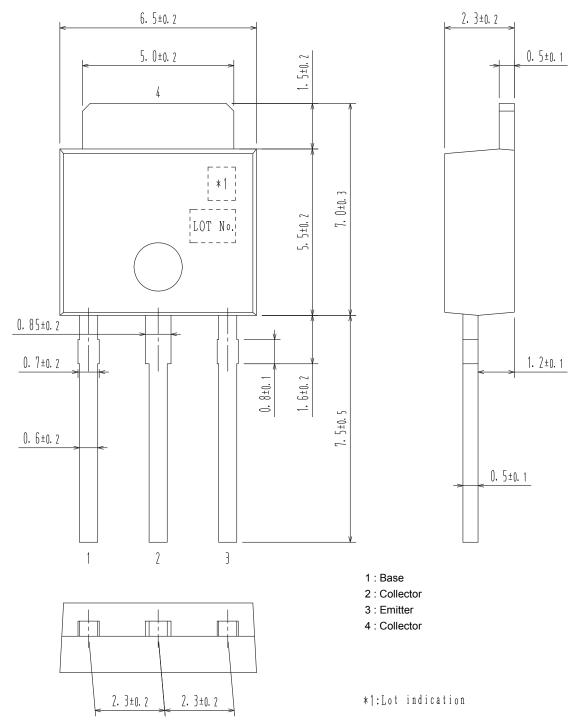

*: The 2SB1216/2SD1816 are classified by 0.5A hFE as follows:

Rank	S	Т	
hFE	140 to 280	200 to 400	


Fig.1 Switching Time Test Circuit

 $I_{C}=10I_{B1}=-10I_{B2}=2A$ For PNP, the polarity is reversed.

www.onsemi.com 3

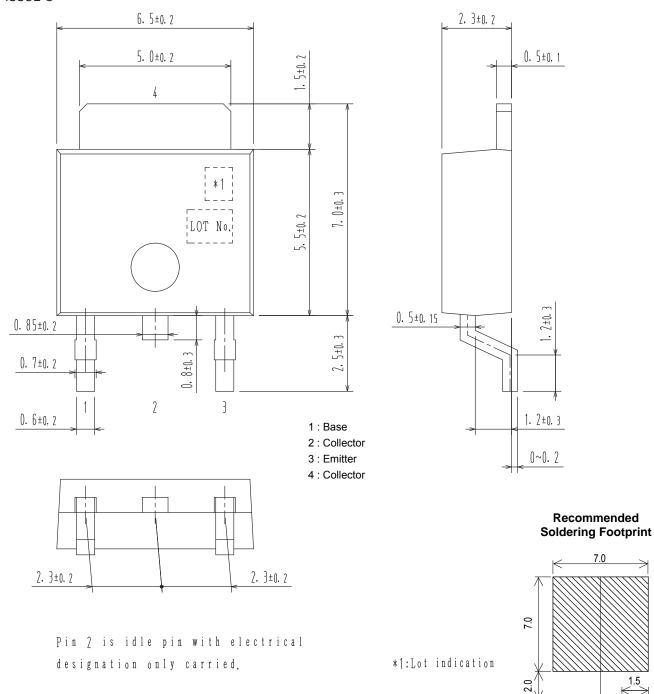

www.onsemi.com 4

PACKAGE DIMENSIONS

unit : mm

IPAK / TP

CASE 369AJ ISSUE O



PACKAGE DIMENSIONS

unit : mm

DPAK / TP-FA

CASE 369AH ISSUE O

7.0

2.3

2.5

1.5

_ 2.3

ORDERING INFORMATION

Device	Marking	Package	Shipping (Qty / Packing)	
2SB1216S-E	B1216			
2SB1216T-E	B1216	IPAK / TP		
2SD1816S-E	D1816	(Pb-Free)		
2SD1816T-E	D1816			
2SB1216S-H	B1216		500/ bag	
2SB1216T-H	B1216	IPAK / TP		
2SD1816S-H	D1816	(Pb-Free / Halogen Free)		
2SD1816T-H	D1816			
2SB1216S-TL-E	B1216		700/ Tape & Reel	
2SB1216T-TL-E	B1216	DPAK / TP-FA		
2SD1816S-TL-E	D1816	(Pb-Free)		
2SD1816T-TL-E	D1816			
2SB1216S-TL-H	B1216			
2SB1216T-TL-H	B1216	DPAK / TP-FA		
2SD1816S-TL-H	D1816	(Pb-Free / Halogen Free)		
2SD1816T-TL-H	D1816			

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and