TS5A2053

Description

The TS5A2053 is a single-pole double-throw (SPDT) analog switch that is designed to operate from 1.65 V to 5.5 V . This device can handle both digital and analog signals, and signals up to V_{+}can be transmitted in either direction.

Applications

- Cell Phones
- Portable Audio Video Equipment
- Battery-Powered Equipment
- Low-Voltage Data-Acquisition Systems
- Test Equipment
- Communication Circuits

FUNCTION TABLE

EN	IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	L	ON	OFF
L	H	OFF	ON
H	X	OFF	OFF

Features

- Low ON-State Resistance (10 Ω)
- Control Inputs Are 5-V Tolerant
- Low Charge Injection
- Excellent ON-Resistance Matching
- Low Total Harmonic Distortion (THD)
- $1.65-\mathrm{V}$ to $5.5-\mathrm{V}$ Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 2000-V Human-Body Model
(A114-B, Class II)
- 1000-V Charged-Device Model (C101)

Summary of Characteristics

$\mathrm{V}_{+}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Configuration	Single Pole Double Throw (SPDT)
Number of channels	1
ON-state resistance (ron)	7.5Ω
ON-state resistance match ($\Delta \mathrm{r}_{\mathrm{On}}$)	0.8Ω
ON-state resistance flatness (ron(flat)	1.7Ω
Turn-on/turn-off time (ton/toFF)	$6.8 \mathrm{~ns} / 4.1 \mathrm{~ns}$
Charge injection (Q_{C})	3 pC
Bandwidth (BW)	330 MHz
OFF isolation (OISO)	-64 dB at 10 MHz
Crosstalk (XTALK)	-68 dB at 10 MHz
Total harmonic distortion (THD)	0.01\%
Leakage current (ICOM(OFF)	$\pm 10 \mathrm{nA}$
Power-supply current (I_{+})	$0.1 \mu \mathrm{~A}$
Package options	8-pin DSBGA, SSOP, or VSSOP

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

$\mathrm{T}_{\text {A }}$	PACKAGE(1)		ORDERABLE PART NUMBER	TOP-SIDE MARKING(2)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	NanoStar™ - WCSP (DSBGA) 0.23-mm Large Bump - YEP	Tape and reel	TS5A2053YEPR	
	NanoFree ${ }^{\text {TM }}$ - WCSP (DSBGA) $0.23-\mathrm{mm}$ Large Bump - YZP (Pb-free)		TS5A2053YZPR	
	SSOP - DCT	Tape and reel	TS5A2053DCTR	JAF_-_
	VSSOP - DCU	Tape and reel	TS5A2053DCUR	JAF_

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
(2) DCT: The actual top-side marking has three additional characters that designate the year, month, and assembly/test site.

DCU: The actual top-side marking has one additional character that designates the assembly/test site.
YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition ($1=\mathrm{SnPb}, \bullet=\mathrm{Pb}$-free).

Absolute Minimum and Maximum Ratings(1)(2)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{+}	Supply voltage range(3)		-0.5	6.5	V
V_{NO} V_{NC} $\mathrm{V}_{\mathrm{COM}}$	Analog voltage range(3)(4)(5)		-0.5	$\mathrm{V}_{+}+0.5$	V
IK	Analog port diode current	$\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}<0$ or $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{COM}}>\mathrm{V}_{+}$	-50	50	mA
${ }^{\prime}$ No ${ }^{1} \mathrm{NC}$ ICOM	On-state switch current	$\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}=0$ to V_{+}	-50	50	mA
V_{1}	Digital input voltage range(3)(4)		-0.5	6.5	V
IIK	Digital input clamp current	$\mathrm{V}_{1}<0$	-50		mA
I_{+}	Continuous current through V_{+}			100	mA
IGND	Continuous current through GND		-100		mA
$\theta \mathrm{JA}$	Package thermal impedance(6)	DCT package		220	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		DCU package		227	
		YEP/YZP package		102	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
(3) All voltages are with respect to ground, unless otherwise specified.
(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(5) This value is limited to 5.5 V maximum.
(6) The package thermal impedance is calculated in accordance with JESD 51-7.

Electrical Characteristics for 5-V Supply ${ }^{(1)}$
$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

TS5A2053
SINGLE-CHANNEL $10-\Omega$ SPDT ANALOG SWITCH

SCDS183A - JANUARY 2005 - REVISED APRIL 2006

Electrical Characteristics for 5-V Supply(1) (continued)

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		$\mathrm{T}_{\text {A }}$	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	5 V	3.8	5.3	6.8	
				Full	4.5 V to 5.5 V	3		7.1	ns
Turn-off time	toFF	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	5 V	0.8	1.9	4.1	ns
				Full	4.5 V to 5.5 V	0.4		4.5	
Charge injection	QC	$\begin{aligned} & \mathrm{V} \text { GEN }=0, \\ & \mathrm{RGEN}=0, \\ & \hline \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF},$ See Figure 21	$25^{\circ} \mathrm{C}$	5 V		3		pC
NO, NC OFF capacitance	$\begin{gathered} \hline \mathrm{C}_{\mathrm{NO} \text { (OFF), }} \\ \mathrm{C}_{\mathrm{NC}}(\mathrm{OFF}) \\ \hline \end{gathered}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+}$or GND, Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	5 V		6		pF
COM OFF capacitance	CCOM(OFF)	$V_{C O M}=V_{+}$or GND, Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	5 V		9.5		pF
NO, NC ON capacitance	$\mathrm{C}_{\mathrm{NO}(\mathrm{ON}),}$ $\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	5 V		18		pF
COM ON capacitance	CCOM(ON)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+} \text {or } \mathrm{GND} \text {, }$ Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	5 V		18		pF
Digital input capacitance	Cl_{1}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	See Figure 16	$25^{\circ} \mathrm{C}$	5 V		2.5		pF
Bandwidth	BW	$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ \text { Switch ON, } \\ \hline \end{array}$	See Figure 18	$25^{\circ} \mathrm{C}$	5 V		330		MHz
OFF isolation	OISO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 19	$25^{\circ} \mathrm{C}$	5 V		-64		dB
Crosstalk	XTALK	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 20	$25^{\circ} \mathrm{C}$	5 V		-68		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz},$ See Figure 22	$25^{\circ} \mathrm{C}$	5 V		0.01		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+} \text {or GND, }$	Switch ON or OFF	$25^{\circ} \mathrm{C}$	5.5 V		0.1	1	$\mu \mathrm{A}$
				Full				5	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

Electrical Characteristics for 3.3-V Supply (1)
$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

TS5A2053
SINGLE-CHANNEL $10-\Omega$ SPDT ANALOG SWITCH

SCDS183A - JANUARY 2005 - REVISED APRIL 2006

Electrical Characteristics for 3.3-V Supply ${ }^{(1)}$ (continued)

$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T_{A}	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$\begin{aligned} & C_{L}=35 \mathrm{pF} \\ & \text { See Figure } 17 \end{aligned}$	$25^{\circ} \mathrm{C}$	3.3 V	5	6.4	7.9	ns
				Full	3 V to 3.6 V	4.5		8.2	
Turn-off time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	3.3 V	1.1	2.4	4.7	ns
				Full	3 V to 3.6 V	0.3		5	
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V}_{\text {GEN }}=0, \\ & \text { RGEN }=0, \end{aligned}$	$C_{L}=0.1 \mathrm{nF},$ $\text { See Figure } 21$	$25^{\circ} \mathrm{C}$	3.3 V		1		pC
NO, NC OFF capacitance	CNO(OFF)	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+}$or GND, Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		6		pF
COM OFF capacitance	CCOM(OFT)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+} \text {or } \mathrm{GND},$ Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		9.5		pF
NO, NC ON capacitance	$\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		18.5		pF
COM ON capacitance	CCOM(ON)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		18.5		pF
Digital input capacitance	CI	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	See Figure 16	$25^{\circ} \mathrm{C}$	3.3 V		3		pF
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega,$ Switch ON,	See Figure 18	$25^{\circ} \mathrm{C}$	3.3 V		320		MHz
OFF isolation	OISO	$\begin{aligned} & R_{L}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 19	$25^{\circ} \mathrm{C}$	3.3 V		-64		dB
Crosstalk	X TALK	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 20	$25^{\circ} \mathrm{C}$	3.3 V		-68		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \text { See Figure } 22 \end{aligned}$	$25^{\circ} \mathrm{C}$	3.3 V		0.035		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+} \text {or GND, }$	Switch ON or OFF	$25^{\circ} \mathrm{C}$	3.6 V		0.1	1	$\mu \mathrm{A}$
				Full				5	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

Electrical Characteristics for 2.5-V Supply ${ }^{(1)}$
$\mathrm{V}_{+}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

[^0]TS5A2053
SINGLE-CHANNEL $10-\Omega$ SPDT ANALOG SWITCH

SCDS183A - JANUARY 2005 - REVISED APRIL 2006

Electrical Characteristics for 2.5-V Supply(1) (continued)

$\mathrm{V}_{+}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T_{A}	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V	5.9	7.1	9.3	
				Full	2.3 V to 2.7 V	5.1		10	ns
Turn-off time	toFF	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	2.5 V	2.1	3.2	5.1	ns
				Full	2.3 V to 2.7 V	1.2		5.2	
Charge injection	Q_{C}	$\begin{array}{\|l} \hline \mathrm{VGEN}=0, \\ \mathrm{RGEN}=0 \\ \hline \end{array}$	$C_{L}=0.1 \mathrm{nF},$ See Figure 21	$25^{\circ} \mathrm{C}$	2.5 V		0.5		pC
NO, NC OFF capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{NO}}(\mathrm{OFF}) \\ & \mathrm{C}_{\mathrm{NC}(\mathrm{OFF})} \\ & \hline \end{aligned}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+}$or GND , Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		6.5		pF
COM OFF capacitance	CCOM(OFF)	$V_{C O M}=V_{+}$or GND, Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		10		pF
NO, NC ON capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{NO}}(\mathrm{ON}) \\ & \mathrm{C}_{\mathrm{NC}(\mathrm{ON})} \end{aligned}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+}$or GND , Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		18.5		pF
COM ON capacitance	CCOM(ON)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+} \text {or GND, }$ Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		18.5		pF
Digital input capacitance	CI	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	See Figure 16	$25^{\circ} \mathrm{C}$	2.5 V		3		pF
Bandwidth	BW	$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ \text { Switch ON, }, \end{array}$	See Figure 18	$25^{\circ} \mathrm{C}$	2.5 V		320		MHz
OFF isolation	OISO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 19	$25^{\circ} \mathrm{C}$	2.5 V		-64		dB
Crosstalk	XTALK	$\begin{aligned} & R_{L}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 20	$25^{\circ} \mathrm{C}$	2.5 V		-68		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz , See Figure 22	$25^{\circ} \mathrm{C}$	2.5 V		0.26		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+} \text {or GND, }$	Switch ON or OFF	$25^{\circ} \mathrm{C}$	2.7 V		0.1	1	$\mu \mathrm{A}$
				Full				5	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

Electrical Characteristics for 1.8-V Supply(${ }^{(1)}$
$\mathrm{V}_{+}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP	MAX	UNIT
Analog Switch									
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \\ \mathrm{v}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0		V_{+}	V
ON-state resistance	r_{0}	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{ICOM}=-4 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	1.65 V	85			Ω
				Full				120	
ON-state resistance match between channels	$\Delta r_{\text {O }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.15 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-4 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	1.65 V	2			Ω
				Full				7.5	
ON-state resistance flatness	$r_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq\left(\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}\right) \leq \mathrm{V}_{+}, \\ & \mathrm{I} \text {, } \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	1.65 V	76			Ω
				Full				100	
NO, NC OFF leakage current	INO(OFF), INC(OFF)	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}$, $V_{C O M}=1.65 \mathrm{~V}$, or V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.65 \mathrm{~V}$, $\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}$,	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	1.95 V	-100	3.5	100	nA
				Full		-200		200	
COM OFF leakage current	ICOM(OFF)	$\begin{array}{r} \mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=1.65 \mathrm{~V}, \\ \mathrm{or} \\ \mathrm{~V}_{\mathrm{COM}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}=0.3 \mathrm{~V}, \end{array}$	Switch OFF, See Figure 14	$25^{\circ} \mathrm{C}$	1.95 V	-100	1	100	nA
				Full		-200		200	
NO, NC ON leakage current	${ }^{\prime} \mathrm{NO}(\mathrm{ON})$, ${ }^{1} \mathrm{NC}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=\text { Open, } \\ & \text { or } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.65 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	1.95 V	-100	4	100	nA
				Full		-200		200	
COM ON leakage current	ICOM(ON)	$\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}$, V_{NO} or $\mathrm{V}_{\mathrm{NC}}=$ Open, $V_{C O M}=1.65 \mathrm{~V}$, V_{NO} or $\mathrm{V}_{\mathrm{NC}}=$ Open,	Switch ON, See Figure 15	$25^{\circ} \mathrm{C}$	1.95 V	-100	1	100	nA
				Full		-200		200	
Digital Control Inputs (IN, $\overline{\mathrm{EN}}$)									
Input logic high	V_{IH}			Full		$\times 0.65$		5.5	V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full		0		$\times 0.35$	V
Input leakage current	IIH, IIL	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	1.95 V	-0.1	0.05	0.1	$\mu \mathrm{A}$
				Full		-1		1	

[^1]TS5A2053
SINGLE-CHANNEL $10-\Omega$ SPDT ANALOG SWITCH

SCDS183A - JANUARY 2005 - REVISED APRIL 2006

Electrical Characteristics for 1.8-V Supply(1) (continued)

$\mathrm{V}_{+}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T_{A}	V_{+}	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1.3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$C_{L}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	1.8 V	10.2	11.8	14.5	ns
				Full	1.65 V to 1.95 V	8.4		15.5	
Turn-off time	tOFF	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1.3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 17	$25^{\circ} \mathrm{C}$	1.8 V	2.9	4.3	6.5	ns
				Full	1.65 V to 1.95 V	2.2		7	
Charge injection	Q_{C}	$\begin{aligned} & \mathrm{V}_{\mathrm{GEN}}=0, \\ & \mathrm{RGEN}=0 \end{aligned}$	$C_{L}=0.1 \mathrm{nF},$ $\text { See Figure } 21$	$25^{\circ} \mathrm{C}$	1.8 V		0.5		pC
NO, NC OFF capacitance	$\begin{array}{\|l} \hline \mathrm{C}_{\mathrm{NO}}(\mathrm{OFF}), \\ \mathrm{C}_{\mathrm{NC}}(\mathrm{OFF}) \\ \hline \end{array}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+}$or GND , Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		6.5		pF
COM OFF capacitance	CCOM(OFT)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}$or GND, Switch OFF,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		10		pF
NO, NC ON capacitance	$\mathrm{C}_{\mathrm{NO}(\mathrm{ON}),}$ CNC(ON)	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+}$or GND , Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		19		pF
COM ON capacitance	CCOM(ON)	$\mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{+}$or GND, Switch ON,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		14		pF
Digital input capacitance	CI	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{+}$or GND,	See Figure 16	$25^{\circ} \mathrm{C}$	1.8 V		3		pF
Bandwidth	BW	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { Switch } \mathrm{ON}, \end{aligned}$	See Figure 18	$25^{\circ} \mathrm{C}$	1.8 V		320		MHz
OFF isolation	OISO	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 19	$25^{\circ} \mathrm{C}$	1.8 V		-64		dB
Crosstalk	XTALK	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 20	$25^{\circ} \mathrm{C}$	1.8 V		-68		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz},$ See Figure 22	$25^{\circ} \mathrm{C}$	1.8 V		2.6		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	1.95 V		0.1	1	$\mu \mathrm{A}$
				Full				5	

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

TYPICAL PERFORMANCE

Figure 1A. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {COM }}\left(\mathrm{V}_{+}=1.65 \mathrm{~V}\right)$

Figure 1C. $r_{\text {on }}$ vs $\mathrm{V}_{\mathrm{COM}}\left(\mathrm{V}_{+}=3 \mathrm{~V}\right)$

Figure 2. $r_{\text {on }}$ vs $\mathrm{V}_{\mathrm{COM}}\left(\mathrm{V}_{+}=3 \mathrm{~V}\right)$

Figure 1B. $r_{\text {on }}$ vs $\mathrm{V}_{\mathrm{COM}}\left(\mathrm{V}_{+}=2.3 \mathrm{~V}\right)$

Figure 1D. r_{on} vs $\mathrm{V}_{\mathrm{COM}}\left(\mathrm{V}_{+}=4.5 \mathrm{~V}\right)$

Figure 3. $\mathrm{r}_{\text {on }}$ vs $\mathrm{V}_{\text {COM }}\left(\mathrm{V}_{+}=4.5 \mathrm{~V}\right)$ WITH ENABLE

TYPICAL PERFORMANCE (continued)

Figure 4. Leakage Current vs Temperature $\left(\mathrm{V}_{+}=5.5 \mathrm{~V}\right)$

Figure 6. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs V_{+}

Figure 5. Charge Injection (Q_{C}) vs $\mathrm{V}_{\mathrm{COM}}$

Figure 7. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ vs Temperature $\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$

Figure 9. Bandwidth ($\mathrm{V}_{+}=5 \mathrm{~V}$)

TYPICAL PERFORMANCE (continued)

Figure 10. OFF Isolation ($\mathrm{V}_{+}=5 \mathrm{~V}$)

Figure 11. Total Harmonic Distortion vs Frequency

Figure 12. Power-Supply Current vs Temperature $\left(\mathrm{V}_{+}=5 \mathrm{~V}\right)$ WITH ENABLE

PIN DESCRIPTION

PIN NUMBER	NAME	DESCRIPTION
1	COM	Common
2	$\overline{\mathrm{EN}}$	Chip enable (active low)
3	GND	Digital ground
4	GND	Digital ground
5	IN	Digital control to connect COM to NC or NO
6	NO	Normally open
7	NC	Normally closed
8	$\mathrm{~V}_{+}$	Power supply

PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION
$\mathrm{V}_{\text {COM }}$	Voltage at COM
V_{NC}	Voltage at NC
V_{NO}	Voltage at NO
$\mathrm{r}_{\text {on }}$	Resistance between COM and NC or COM and NO ports when the channel is ON
$\Delta r_{\text {on }}$	Difference of $r_{\text {on }}$ between channels in a specific device
$\mathrm{r}_{\text {on(flat) }}$	Difference between the maximum and minimum value of $r_{\text {on }}$ in a channel over the specified range of conditions
INC(OFF)	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state
INO(OFF)	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state
InC(ON)	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open
${ }^{\text {I }} \mathrm{NO}(\mathrm{ON})$	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open
ICOM(OFF)	Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the OFF state and the output (NC or NO) open
ICOM(ON)	Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state and the output (NC or NO) open
V_{IH}	Minimum input voltage for logic high for the control input (IN, ENN)
$\mathrm{V}_{\text {IL }}$	Maximum input voltage for logic low for the control input (IN, ENN)
V_{I}	Voltage at the control input (IN, EN)
	Leakage current measured at the control input (IN, $\overline{\mathrm{EN}}$)
ton	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM, NC, or NO) signal when the switch is turning ON .
tOFF	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM, NC, or NO) signal when the switch is turning OFF.
Q_{C}	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_{C}=C_{L} \times \Delta V_{C O M}, C_{L}$ is the load capacitance and $\Delta V_{C O M}$ is the change in analog output voltage.

INSTRUMENTS

PARAMETER DESCRIPTION (continued)

SYMBOL	DESCRIPTION
$\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF
$\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$	Capacitance at the NC port when the corresponding channel (NC to COM) is ON
$\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
$\mathrm{C}_{\text {COM (OFF) }}$	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is OFF
CCOM(ON)	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON
Cl_{1}	Capacitance of control input (IN, EN)
OISO	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state.
XtaLk	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB.
BW	Bandwidth of the switch. This is the frequency where the gain of an ON channel is -3 dB below the DC gain.
THD	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of fundamental harmonic.
I_{+}	Static power-supply current with the control (IN, EN) pin at V_{+}or GND

PARAMETER MEASUREMENT INFORMATION

Figure 13. ON-State Resistance (ron)

OFF-State Leakage Current Channel OFF
$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}

Figure 14. OFF-State Leakage Current (linc(OFF), $I_{\text {NO(OFF) }} I_{\text {COM(OFF) }}$)

Figure 15. ON-State Leakage Current (ICOM(ON), $\left.I_{\mathrm{NC}(\mathrm{ON}), ~} \mathrm{I}_{\mathrm{NO}(\mathrm{ON})}\right)$

$\mathrm{V}_{\text {BIAS }}=\mathrm{V}_{+}$or GND
$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}
Capacitance is measured at NC, NO, COM, $\overline{\mathrm{EN}}$ and IN inputs during ON and OFF conditions.

Figure 16. Capacitance ($\mathrm{C}_{\mathrm{l}}, \mathrm{C}_{\mathrm{COM}(\mathrm{OFF}),} \mathrm{C}_{\mathrm{COM}(\mathrm{ON})}, \mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NO}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NC}(\mathrm{ON})}, \mathrm{C}_{\mathrm{NO}(\mathrm{ON}) \text {) }}$

(1) All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
(2) C_{L} includes probe and jig capacitance.
(3) See Electrical Characteristics for $\mathrm{V}_{\mathrm{COM}}$ -

Figure 17. Turn-On (ton) and Turn-Off Time (toff)

Figure 18. Bandwidth (BW)

Figure 19. OFF Isolation ($\mathrm{O}_{\text {ISO }}$)

Figure 20. Crosstalk ($\mathrm{X}_{\text {TALK }}$)

(1) All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
(2) C_{L} includes probe and jig capacitance.

Figure 21. Charge Injection (Q_{C})

(1) C_{L} includes probe and jig capacitance.

Figure 22. Total Harmonic Distortion (THD)

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TS5A2053DCTR	ACTIVE	SM8	DCT	8	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & \text { JAF } \\ & \text { Z } \end{aligned}$	Samples
TS5A2053DCTRE4	ACTIVE	SM8	DCT	8	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & \mathrm{JAF} \\ & \mathrm{Z} \end{aligned}$	Samples
TS5A2053DCUR	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU \| CU SN	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & (\mathrm{AF} \sim \mathrm{JAFQ} \sim \mathrm{JAFR}) \\ & \mathrm{JZ} \end{aligned}$	Samples
TS5A2053DCURG4	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	JAFR	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by Tl to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TS5A2053DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
TS5A2053DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
TS5A2053DCUR	VSSOP	DCU	8	3000	180.0	9.0	2.05	3.3	1.0	4.0	8.0	Q3
TS5A2053DCURG4	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A2053DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
TS5A2053DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
TS5A2053DCUR	VSSOP	DCU	8	3000	182.0	182.0	20.0
TS5A2053DCURG4	VSSOP	DCU	8	3000	202.0	201.0	28.0

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion
D. Falls within JEDEC MO-187 variation DA.

DCT (R-PDSO-G8)
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DCU (R-PDSO-G8)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-187 variation CA.

DCU (S-PDSO-G8)
PLASTIC SMALL OUTLINE PACKAGE (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Tl's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.
Tl's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate Tl products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.
Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such Tl Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

[^0]: (1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

[^1]: (1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

