

TPS53321

SLUSAF3A - DECEMBER 2010-REVISED NOVEMBER 2016

TPS53321 5-A Step-Down Regulator With Integrated Switcher

Features

- 96% Maximum Efficiency
- Continuous 5-A Output Current
- Supports All MLCC Output Capacitor
- SmoothPWM™ Auto-Skip Eco-Mode™ for Light-Load Efficiency
- Optimized Efficiency at Light and Heavy Loads
- Voltage Mode Control
- Supports Master-Slave Interleaved Operation
- Synchronization up to ±20% of Nominal Frequency
- Conversion Voltage Range Between 2.9 V and
- Soft-Stop Output Discharge During Disable
- Adjustable Output Voltage Ranging Between 0.6 V and 0.84 V \times V_{IN}
- Overcurrent, Overvoltage, and Overtemperature Protection
- Small 3 mm x 3 mm, 16-Pin QFN Package
- Open-Drain Power Good Indication
- Internal Boot Strap Switch
- Low $R_{DS(on)}$, 24 m Ω With 3.3-V Input and 19-m Ω With 5-V Input
- Supports Prebias Start-Up

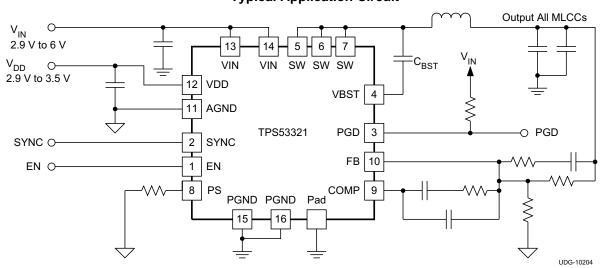
Applications

- 5-V Step-Down Rails
- 3.3-V Step-Down Rails

3 Description

The TPS53321 device provides a fully integrated 3-V to 5-V V_{IN} integrated synchronous FET converter solution with 16 total components in 200 mm² of PCB area. Due to the low ON-resistance and TI's Proprietary SmoothPWM™ skip mode of operation, it enables 96% peak efficiency and over 90% efficiency at loads as light as 100 mA. It requires only two 22µF ceramic output capacitors for a power dense 5-A solution.

The TPS53321 features a 1.1-MHz switching frequency, skip mode operation support, prebias start-up, internal soft start, output soft discharge, internal VBST switch, power good, EN/input UVLO, overcurrent, overvoltage, undervoltage, overtemperature protections, and all ceramic output capacitor support. It supports supply voltage from 2.9 V to 3.5 V and conversion voltage from 2.9 V to 6 V. The output voltage is adjustable from 0.6 V to $0.84 \text{ V} \times \text{V}_{IN}$.


The TPS53321 is available in the 3 mm \times 3 mm 16-pin QFN package (Green RoHs compliant and Pb free) and operates between -40°C and 85°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS53321	QFN (16)	3.00 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Circuit

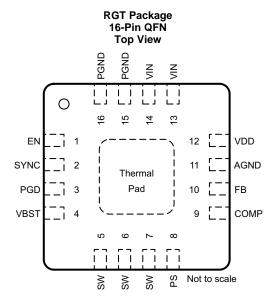
Copyright © 2016, Texas Instruments Incorporated

Table of Contents

1	Features 1		7.4 Device Functional Modes	
2	Applications 1	8	Application and Implementation	12
3	Description 1		8.1 Application Information	12
4	Revision History2		8.2 Typical Application	12
5	Pin Configuration and Functions3	9	Power Supply Recommendations	18
6	Specifications4	10	Layout	19
-	6.1 Absolute Maximum Ratings 4		10.1 Layout Guidelines	19
	6.2 ESD Ratings		10.2 Layout Example	19
	6.3 Recommended Operating Conditions	11	Device and Documentation Support	20
	6.4 Thermal Information		11.1 Receiving Notification of Documentation Update	es 20
	6.5 Electrical Characteristics5		11.2 Community Resources	20
	6.6 Typical Characteristics		11.3 Trademarks	20
7	Detailed Description9		11.4 Electrostatic Discharge Caution	20
•	7.1 Overview		11.5 Glossary	20
	7.2 Functional Block Diagram9	12	Mechanical, Packaging, and Orderable	
	7.3 Feature Description9		Information	2

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Original (December 2010) to Revision A

Page

•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Deleted Ordering Information table; see POA at the end of the data sheet	1
•	Deleted Lead temperature, 1.6 mm (1/16 inch) from case for 10 seconds: 300°C	4
•	Deleted Package Dissipation Ratings table	5
•	Added Thermal Information table	5
•	Changed R2 value in <i>Typical 3.3-V Input Application Circuit Diagram</i> From: 4.02 kΩ To: 2.67 kΩ	12
•	Changed R2 value in Master and Slave Configuration Schematic From: 4.02 kΩ To: 2.67 kΩ	16
•	Changed R12 value in <i>Master and Slave Configuration Schematic</i> From: 2.67 kΩ To: 4.02 kΩ	16

5 Pin Configuration and Functions

Pin Functions

	PIN	TYPE ⁽¹⁾	DESCRIPTION
NO.	NAME	ITPE\'	DESCRIPTION
1	EN	I	Enable. Internally pulled up to VDD with a 1.35-M Ω resistor.
2	SYNC	В	Synchronization signal for input interleaving. Master SYNC pin sends out 180° out-of-phase signal to slave SYNC. SYNC frequency must be within ±20% of slave nominal frequency.
3	PGD	0	Power good output flag. Open-drain output. Pull up to an external rail through a resistor.
4	VBST	Р	Supply input for high-side MOSFET (bootstrap terminal). Connect capacitor from this pin to SW terminal.
5	SW	В	Output inductor connection to integrated power devices
6	SW	В	Output inductor connection to integrated power devices
7	SW	В	Output inductor connection to integrated power devices
8	PS	I	Mode configuration pin (with 10-μA current): Connecting to ground: FCCM slave Pulled high or floating (internal pulled high): FCCM master Connect a 24.3-k Ω resistor to GND: DE slave Connect a 57.6-k Ω resistor to GND: HEF mode Connect a 105-k Ω resistor to GND: reserved mode Connect a 174-k Ω resistor to GND: DE master
9	COMP	0	Error amplifier compensation terminal. Type III compensation method is recommended for stability.
10	FB	I	Voltage feedback. Also used for OVP, UVP, and PGD determination.
11	AGND	G	Device analog ground terminal
12	VDD	Р	Input bias supply for analog functions
13	VIN	Р	Gate driver supply and power conversion voltage input
14	VIN	Р	Gate driver supply and power conversion voltage input
15	PGND	Р	IC power GND terminal
16	PGND	Р	IC power GND terminal

(1) B = Bidirectional, G = Ground, I = Input, O = Output, P = Supply

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
	VIN, EN		-0.3	7	
lonut voltage	VBST	VBST		17	V
Input voltage	VBST(with respect to	o SW)	-0.3	7	V
	FB, PS, VDD	FB, PS, VDD		3.7	
	SW	DC	-0.3	7	
	SVV	Pulse < 20 ns, E = $5 \mu J$	-3	10	
Output voltage	PGD	PGD COMP, SYNC		7	V
	COMP, SYNC			3.7	
	PGND		-0.3	0.3	
Junction temperature, T _J			-40	150	°C
Ambient temperature, T _A		·	-40	85	°C
Storage temperature, T _{stg}	<u>-</u>	·	– 55	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Clastrostatia diasharas	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT	
	VIN	2.9		6		
Input voltage	VDD	2.9	3.3	3.5		
	VBST	-0.1		13.5		
	VBST(with respect to SW)	-0.1		6	V	
	EN	-0.1		6		
	FB, PS	-0.1		3.5		
	SW	-1		6.5		
Outnot valtana	PGD	-0.1		6	V	
Output voltage	COMP, SYNC	-0.1		3.5	V	
	PGND	-0.1		0.1		
Junction temperature		-40		125	°C	

Product Folder Links: TPS53321

Copyright © 2010-2016, Texas Instruments Incorporated

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

		TPS53321	
	THERMAL METRIC ⁽¹⁾	RGT (QFN)	UNIT
		16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	42.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	51.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	16	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.7	°C/W
ΨЈВ	Junction-to-board characterization parameter	16	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	4.4	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over recommended free-air temperature range, $V_{IN} = 3.3 \text{ V}$, $V_{VDD} = 3.3 \text{ V}$, and PGND = GND (unless otherwise noted)

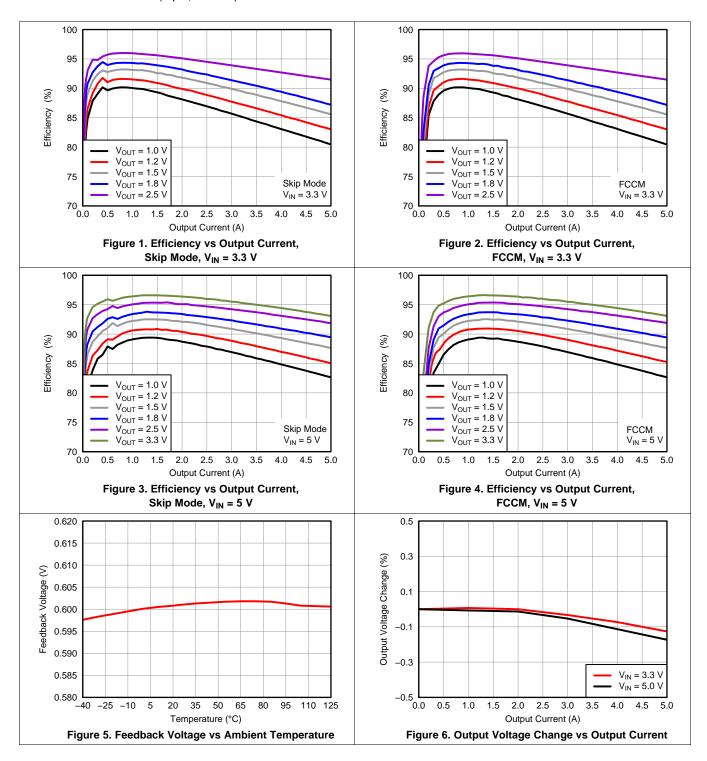
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY: VO	LTAGE, CURRENTS, and UVLO					
V _{IN}	VIN supply voltage	Nominal input voltage range	2.9		6	V
I _{VINSDN}	VIN shutdown current	EN = LO			3	μΑ
V _{UVLO}	VIN UVLO threshold	Ramp up, EN = HI		2.8		V
V _{UVLOHYS}	VIN UVLO hysteresis	VIN UVLO Hysteresis		130		mV
V_{DD}	Internal circuitry supply voltage	Nominal 3.3-V input voltage range	2.9	3.3	3.5	V
I _{DDSDN}	VDD shutdown current	EN = LO			5	μA
I _{DD}	Standby current	EN = HI, no switching		2.2	3.5	mA
V _{DDUVLO}	3.3-V UVLO threshold	Ramp up, EN = HI		2.8		V
V _{DDUVLOHYS}	3.3-V UVLO hysteresis			75		mV
VOLTAGE FE	EEDBACK LOOP: VREF AND ER	ROR AMPLIFIER				
V _{VREF}	VREF	Internal precision reference voltage		0.6		V
	VDEE Talanaaa	0°C ≤ T _A ≤ 85°C	-1%		1%	
TOLV _{REF}	VREF Tolerance	-40°C ≤ T _A ≤ 85°C	-1.25%		1.25%	
UGBW ⁽¹⁾	Unity gain bandwidth		14			MHz
A _{OL} ⁽¹⁾	Open-loop gain		80			dB
I _{FBINT}	FB input leakage current	Sourced from FB pin			30	nA
I _{EAMAX} ⁽¹⁾	Output sinking and sourcing current	C _{COMP} = 20 pF		5		mA
SR ⁽¹⁾	Slew rate			5		V/µs
OCP: OVERO	CURRENT AND ZERO CROSSING)				
I _{OCPL}	Overcurrent limit on upper FET	When I_{OUT} exceeds this threshold for 4 consecutive cycles. V_{IN} =3.3 V, V_{OUT} =1.5 V with 1- μ H inductor, T_A = 25°C	6	6.5	7	Α
I _{OCPH}	One time overcurrent latch off on the lower FET	Immediately shuts down when sensed current reach this value. V_{IN} =3.3 V, V_{OUT} =1.5 V with 1- μ H inductor, T_A = 25°C	6.25	6.8	7.35	Α
tHICCUP	Hiccup time interval		12.5	14.5	16.5	ms
V _{ZXOFF} ⁽¹⁾	Zero crossing comparator internal offset	PGND – SW, skip mode	-4.5	-3	-1.5	mV
PROTECTION	N: OVP, UVP, PGD, AND INTERN	AL THERMAL SHUTDOWN				
V _{OVP}	Overvoltage protection threshold voltage	Measured at FB w/r/t VREF	114%	117%	120%	
V _{UVP}	Undervoltage protection threshold voltage	Measured at FB w/r/t VREF	80%	83%	86%	

(1) Ensured by design. Not production tested.

Submit Documentation Feedback

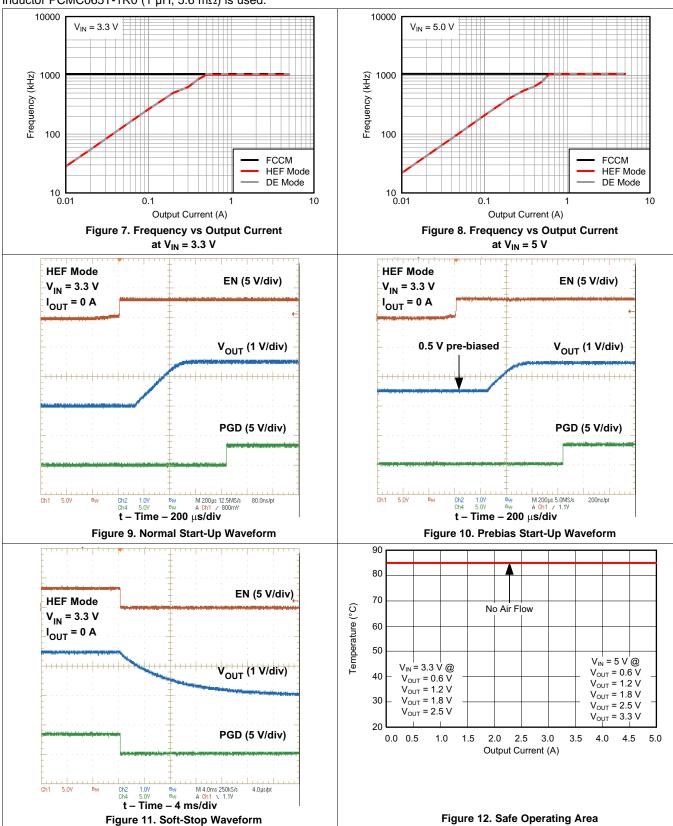
Electrical Characteristics (continued)

over recommended free-air temperature range, $V_{IN} = 3.3 \text{ V}$, $V_{VDD} = 3.3 \text{ V}$, and PGND = GND (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{PGDL}	PGD low threshold	Measured at FB w/r/t VREF	80%	83%	86%		
V_{PGDU}	PGD upper threshold	Measured at FB w/r/t VREF	114%	117%	120%		
V _{INMINPG}	Minimum Vin voltage for valid PGD at start-up	Measured at V _{IN} with 1-mA (or 2-mA) sink current on PGD pin at start-up		1		V	
THSD ⁽¹⁾	Thermal shutdown	Latch off controller, attempt soft-stop	130	140	150	°C	
THSD _{HYS} ⁽¹⁾	Thermal shutdown hysteresis	Controller restarts after temperature has dropped		40		°C	
LOGIC PINS:	I/O VOLTAGE AND CURRENT						
V_{PGPD}	PGD pulldown voltage	Pulldown voltage with 4-mA sink current		0.2	0.4	V	
I _{PGLK}	PGD leakage current	Hi-Z leakage current, apply 3.3-V in off state	-2	0	2	μΑ	
R _{ENPU}	Enable pullup resistor			1.35		МΩ	
V _{ENH}	EN logic high threshold		1.1	1.18	1.3	V	
V _{ENHYS}	EN hysteresis			0.18	0.24	V	
		Level 1 to level 2 ⁽²⁾		0.12			
PS _{THS}		Level 2 to level 3		0.4			
	PS mode threshold voltage	Level 3 to level 4		0.8		V	
		Level 4 to level 5		1.4			
		Level 5 to level 6		2.2			
I _{PS}	PS source	10-μA pullup current when enabled	8	10	12	μA	
f _{SYNCSL}	Slave SYNC frequency range	Versus nominal switching frequency	-20%		20%	-	
PW _{SYNC}	SYNC low pulse width			110		ns	
I _{SYNC}	SYNC pin sink current	T _A = 25°C		10		μΑ	
V _{SYNCTHS} ⁽¹⁾	SYNC threshold	Falling edge		1		V	
V _{SYNCHYS} ⁽¹⁾	SYNC hysteresis			0.5		V	
	P: VOLTAGE AND LEAKAGE CU	IRRENT					
I _{VBSTLK}	VBST leakage current	V _{IN} = 3.3 V, V _{VBST} = 6.6 V, T _A = 25°C			1	μΑ	
	FREQUENCY, RAMP, ON-TIME					·	
t _{SS 1}	Delay after EN asserting	EN = HI, master or HEF mode		0.2		ms	
t _{SS_2}	Delay after EN asserting	EN = HI, slave waiting time		0.5		ms	
t _{SS_3}	Soft-start ramp-up time	Rising from V _{SS} = 0 V to V _{SS} = 0.6 V		0.4		ms	
t _{PGDENDLY}	PGD start-up delay time	Rising from $V_{SS} = 0 \text{ V}$ to $V_{SS} = 0.6 \text{ V}$, from V_{SS} reaching 0.6 V to V_{PGD} going high		1.2		ms	
t _{OVPDLY}	Overvoltage protection delay time	Time from FB out of +20% of VREF to OVP fault	1	1.7	2.5	μs	
t _{UVPDLY}	Undervoltage protection delay time	Time from FB out of –20% of VREF to UVP fault		11		μs	
f _{SW}	Switching frequency control	FCCM	0.99	1.1	1.21	MHz	
	Ramp amplitude ⁽¹⁾	2.9 V < V _{IN} < 6.0 V		V _{IN} /4		٧	
	Maria OFF 2	FCCM or DE mode		100	140		
t _{MIN(off)}	Minimum OFF time	HEF mode		175	250	ns	
D	Maximum duty cycle, FCCM and DE mode	f _{SW} = 1.1 MHz, 0°C ≤ T _A ≤ 85°C	84%	89%			
D _{MAX}	Maximum duty cycle, HEF mode	f _{SW} = 1.1 MHz, 0°C ≤ T _A ≤ 85°C	75%	81%			
R _{SFTSTP}	Soft-discharge transistor resistance	V _{EN} = Low, V _{IN} = 3.3 V, V _{OUT} = 0.5 V		60		Ω	
		+					

⁽²⁾ See PS pin description for levels.

6.6 Typical Characteristics

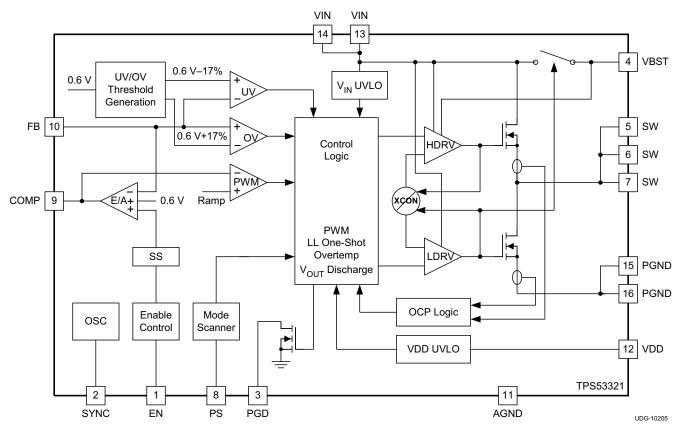

Inductor PCMC065T-1R0 (1 μ H, 5.6 m Ω) is used.

Typical Characteristics (continued)

Inductor PCMC065T-1R0 (1 $\mu\text{H},\,5.6~\text{m}\Omega)$ is used.

Submit Documentation Feedback

Copyright © 2010–2016, Texas Instruments Incorporated


7 Detailed Description

7.1 Overview

The TPS53321 is a high-efficiency switching regulator with two integrated N-channel MOSFETs and is capable of delivering up to 5 A of load current. The TPS53321 provides output voltage between 0.6 V and 0.84 \times V_{IN} from 2.9 V to 6 V wide input voltage range.

This device employs five operation modes to fit various application requirements. The *master or slave* mode enables a two-phase interleaved operation to reduce input ripple. The *skip* mode operation provides reduced power loss and increases the efficiency at light load. The unique, patented PWM modulator enables smooth light load to heavy load transition while maintaining fast load transient.

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

7.3 Feature Description

7.3.1 Soft Start

The soft-start function reduces the inrush current during the start up sequence. A slow-rising reference voltage is generated by the soft-start circuitry and sent to the input of the error amplifier. When the soft-start ramp voltage is less than 600 mV, the error amplifier uses this ramp voltage as the reference. When the ramp voltage reaches 600 mV, the error amplifier switches to a fixed 600-mV reference. The typical soft-start time is 400 µs.

7.3.2 Power Good

The TPS53321 monitors the voltage on the FB pin. If the FB voltage is between 83% and 117% of the reference voltage, the power good signal remains high. If the FB voltage falls outside of these limits, the internal open-drain output pulls the power good pin (PGD) low.

Feature Description (continued)

During start-up, V_{IN} must be higher than 1 V to have valid power good logic, and the power good signal is delayed for 1.2 ms after the FB voltage falls to within the power good limits. There is also 10- μ s delay during the shutdown sequence.

7.3.3 Undervoltage Lockout (UVLO) Protection

The TPS53321 provides undervoltage lockout (UVLO) protection for both power input (V_{IN}) and bias input (VDD) voltage. If either of them is lower than the UVLO threshold voltage minus the hysteresis, the device shuts off. When the voltage rises above the threshold voltage, the device restarts. The typical UVLO rising threshold is 2.8 V for both V_{IN} and V_{VDD} . A hysteresis voltage of 130 mV for V_{IN} and 75 mV for V_{VDD} is also provided to prevent glitch.

7.3.4 Overcurrent Protection

The TPS53321 continuously monitors the current flowing through the high-side and the low-side MOSFETs. If the current through the high-side FET exceeds 6.5 A, the high-side FET turns off and the low-side FET turns on until the next PWM cycle. An overcurrent (OC) counter starts to increment each occurrence of an overcurrent event. The converter shuts down immediately when the OC counter reaches four. The OC counter resets if the detected current is less 6.5 A after an OC event.

Another set of overcurrent circuitry monitors the current flowing through low-side FET. If the current through the low-side FET exceeds 6.8 A, the overcurrent protection is enabled and immediately turns off both the high-side and the low-side FETs and shuts down the converter. The device is fully protected against overcurrent during both on-time and off-time. The device attempts to restart after a hiccup delay of 14.5 ms (typical). If the overcurrent condition clears before restart, the device starts up normally.

7.3.5 Overvoltage Protection

The TPS53321 monitors the voltage divided feedback voltage to detect overvoltage and undervoltage conditions. When the feedback voltage is greater than 117% of the reference, the high-side MOSFET turns off and the low-side MOSFET turns on. The output voltage then drops until it reaches the undervoltage threshold. At that point the low-side MOSFET turns off and the device enters a high-impedance state.

7.3.6 Undervoltage Protection

When the feedback voltage is lower than 83% of the reference voltage, the undervoltage protection timer starts. If the feedback voltage remains lower than the undervoltage threshold voltage after 10 µs, the device turns off both the high-side and the low-side MOSFETs and goes into a high-impedance state. The device attempts to restart after a hiccup delay of 14.5 ms (typical).

7.3.7 Overtemperature Protection

The TPS53321 continuously monitors the die temperature. If the die temperature exceeds the threshold value (140°C typical), the device shuts off. When the device temperature falls to 40°C below the overtemperature threshold, it restarts and returns to normal operation.

7.3.8 Output Discharge

When the enable pin is low, the TPS53321 discharges the output capacitors through an internal MOSFET switch between SW and PGND while high-side and low-side MOSFETs remain off. The typical discharge switch ON-resistance is 60 Ω . This function is disabled when V_{IN} is less than 1 V_{IN} .

7.3.9 Master and Slave Operation and Synchronization

Two TPS53321 can operate interleaved when configured as master and slave. The SYNC pins of the two devices are connected together for synchronization. In CCM, the master device sends the 180° out-of-phase pulse to the slave device through the SYNC pin, which determines the leading edge of the PWM pulse. If the slave device does not receive the SYNC pulse from the master device or if the SYNC connection is broken during operation, the slave device continues to operate using its own internal clock.

Feature Description (continued)

In DE mode, the master and slave switching node does not synchronize to each other if either one of them is operating in DCM. When both master and slave enter CCM, the switching nodes of the master and the slave synchronize to each other.

The SYNC pin of the slave device can also connect to external clock source within ±20% of the 1.1-MHz switching frequency. The falling edge of the SYNC triggers the rising edge of the PWM signal.

7.4 Device Functional Modes

7.4.1 Operation Modes

The TPS53321 offers five operation modes determined by the PS pin connections listed in Table 1.

PS PIN CONNECTION OPERATION MODE AUTO-SKIP AT LIGHT LOAD MASTER/SLAVE SUPPORT GND FCCM Slave Slave 24.3 k Ω to GND DE Slave Yes Slave 57.6 $k\Omega$ to GND **HEF Mode** Yes 174 $k\Omega$ to GND **DE Master** Yes Master Floating or pulled to VDD **FCCM Master** Master

Table 1. Operation Mode Selection

In forced continuous conduction mode (FCCM), the high-side FET is ON during the on-time and the low-side FET is ON during the off-time. The switching is synchronized to the internal clock thus the switching frequency is fixed.

In *diode emulation* (DE) mode, the high-side FET is ON during the on-time and low-side FET is ON during the off-time until the inductor current reaches zero. An internal zero-crossing comparator detects the zero crossing of inductor current from positive to negative. When the inductor current reaches zero, the comparator sends a signal to the logic control and turns off the low-side FET.

When the load is increased, the inductor current is always positive and the zero-crossing comparator does not send a zero-crossing signal. The converter enters into *continuous conduction* mode (CCM) when no zero-crossing is detected for two consecutive PWM pulses. The switching synchronizes to the internal clock and the switching frequency is fixed.

In *high-efficiency* (HEF) mode, the operation is the same as DE mode at light load. However, the converter does not synchronize to the internal clock during CCM. Instead, the PWM modulator determines the switching frequency.

7.4.2 Eco-Mode™ Light-Load Operation

In skip modes (DE and HEF) when the load current is less than one-half of the inductor peak current, the inductor current becomes negative by the end of off-time. During light load operation, the low-side MOSFET is turned off when the inductor current reaches zero. The energy delivered to the load per switching cycle is increased compared to the normal PWM mode operation and the switching frequency is reduced. The switching loss is reduced, thereby improving efficiency.

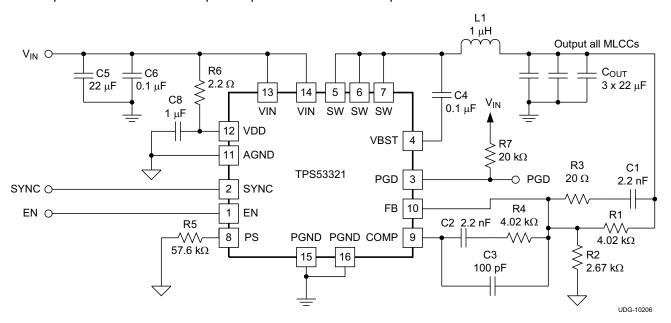
In both DE and HEF mode, the switching frequency is reduced in discontinuous conduction mode (DCM). When the load current is 0 A, the minimum switching frequency is reached. The difference between V_{VBST} and V_{SW} must be maintained at a value higher than 2.4 V.

7.4.3 Forced Continuous Conduction Mode (FCCM)

When the PS pin is grounded or greater than 2.2 V, the TPS53321 is operating in *forced continuous conduction mode* in both light-load and heavy-load conditions. In this mode, the switching frequency remains constant over the entire load range, making it suitable for applications that require tight control of switching frequency at a cost of lower efficiency at light load.

8 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPS53321 device is a high-efficiency synchronous-buck converter. The device suits low output voltage point-of-load applications with 5-A or lower output current in computing and similar digital consumer applications.

8.2 Typical Application

This design example describes a voltage-mode, 5-A synchronous buck converter with integrated MOSFETs. The device provides a fixed 1.5-V output at up to 5 A from a 3.3-V input bus.

Copyright © 2016, Texas Instruments Incorporated

Copyright © 2010-2016, Texas Instruments Incorporated

Figure 13. Typical 3.3-V Input Application Circuit Diagram

8.2.1 Design Requirements

Table 2 lists the design specifications for this application example.

Table 2. TPS53321 Design Example Specifications

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT CHARACTERISTICS					
Input voltage, VIN	Vin	2.9	3.3	6	V
Maximum input current	Vin = 3.3 V,1.5 V/5 A		2.67		Α
No load input current	Vin = 3.3 V,1.5 V/0 A		12.5		mA

Typical Application (continued)

Table 2. TPS53321 Design Example Specifications (continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT CHARACTERISTICS		·			
Output voltage, Vo		1.485	1.5	1.515	V
Output valtage regulation	Line regulation				
Output voltage regulation	Load regulation				
Output voltage ripple	Vin = 3.3 V, 1.5 V/0 A to 5 A			20	mVpp
Output load current		0		5	Α
Output over current			6.5		Α
OUTPUT CHARACTERISTICS					
Switching frequency	Fixed		1.1		MHz
1.5. V. full load officionay	Vin = 3.3 V, 1.5 V/5 A		85.94%		
1.5-V full load efficiency	Vin = 5 V, 1.5 V/5 A		87%	1.515	
Operating temperature			25		°C

8.2.2 Detailed Design Procedure

8.2.2.1 Determine the Value of R1 and R2

The output voltage is programmed by the voltage-divider resistor, R1 and R2 shown in Figure 13. R1 is connected between the FB pin and the output, and R2 is connected between the FB pin and GND. The recommended value for R1 is from 1 k Ω to 5 k Ω . Determine R2 using equation in Equation 1.

$$R2 = \frac{0.6}{V_{OUT} - 0.6} \times R1$$
 (1)

8.2.2.2 Choose the Inductor

The inductance value must be determined to give the ripple current of approximately 20% to 40% of maximum output current. The inductor ripple current is determined by Equation 2.

$$I_{L(ripple)} = \frac{1}{L \times f_{SW}} \times \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{V_{IN}}$$
(2)

The inductor also requires low DCR to achieve good efficiency, as well as enough room above peak inductor current before saturation.

8.2.2.3 Choose the Output Capacitor(s)

The output capacitor selection is determined by output ripple and transient requirement. When operating in CC mode, the output ripple has three components calculated with Equation 3 through Equation 6.

$$V_{RIPPLE} = V_{RIPPLE(C)} + V_{RIPPLE(ESR)} + V_{RIPPLE(ESL)}$$
(3)

$$V_{RIPPLE(C)} = \frac{I_{L(ripple)}}{8 \times C_{OUT} \times f_{SW}}$$
(4)

$$V_{RIPPLE(ESR)} = I_{L(ripple)} \times ESR$$
(5)

$$V_{RIPPLE(ESL)} = \frac{V_{IN} \times ESL}{L}$$
(6)

When ceramic output capacitors are used, the ESL component is usually negligible. In the case when multiple output capacitors are used, ESR and ESL must be the equivalent of ESR and ESL of all the output capacitor in parallel.

When operating in DCM, the output ripple is dominated by the component determined by capacitance. It also varies with load current and can be expressed as shown in Equation 7.

$$V_{RIPPLE(DCM)} = \frac{\left(\alpha \times I_{L(ripple)} - I_{OUT}\right)^{2}}{2 \times C_{OUT} \times f_{SW} \times I_{L(ripple)}}$$

where

• α is the DCM on-time coefficient and can be expressed in Equation 8 (typical value 1.25) (7)

$$\alpha = \frac{t_{ON(DCM)}}{t_{ON(CCM)}} \tag{8}$$

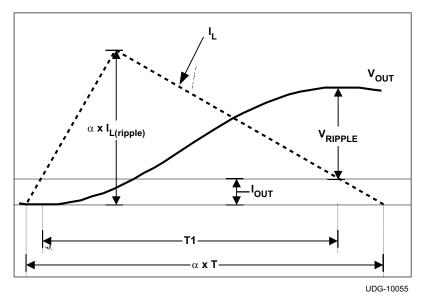


Figure 14. DCM V_{OUT} Ripple Calculation

8.2.2.4 Choose the Input Capacitor

The selection of input capacitor must be determined by the ripple current requirement. The ripple current generated by the converter must be absorbed by the input capacitors as well as the input source. The RMS ripple current from the converter can be expressed in Equation 9.

$$I_{IN\left(ripple\right)} = I_{OUT} \times \sqrt{D \times \left(1 - D\right)}$$

where

D is the duty cycle and can be expressed as shown in Equation 10

(9)

$$D = \frac{V_{OUT}}{V_{IN}} \tag{10}$$

To minimize the ripple current drawn from the input source, sufficient input decoupling capacitors must be placed close to the device. The ceramic capacitor is recommended because it provides low ESR and low ESL. The input voltage ripple can be calculated as shown in Equation 11 when the total input capacitance is determined.

$$V_{IN(ripple)} = \frac{I_{OUT} \times D}{f_{SW} \times C_{IN}}$$
(11)

8.2.2.5 Compensation Design

The TPS53321 uses voltage mode control. To effectively compensate the power stage and ensure fast transient response, Type III compensation is typically used.

The control to output transfer function can be described in Equation 12.

$$G_{CO} = 4 \times \frac{1 + s \times C_{OUT} \times ESR}{1 + s \times \left(\frac{L}{DCR + R_{LOAD}} + C_{OUT} \times (ESR + DCR)\right) + s^2 \times L \times C_{OUT}}$$
(12)

The output L-C filter introduces a double pole which can be calculated as shown in Equation 13.

$$f_{\text{DP}} = \frac{1}{2 \times \pi \times \sqrt{L \times C_{\text{OUT}}}} \tag{13}$$

The ESR zero can be calculated as shown in Equation 14.

$$f_{\mathsf{ESR}} = \frac{1}{2 \times \pi \times \mathsf{ESR} \times \mathsf{C}_{\mathsf{OUT}}} \tag{14}$$

Figure 15 and Figure 16 show the configuration of Type III compensation and typical pole and zero locations. Equation 16 through Equation 20 describe the compensator transfer function and poles and zeros of the Type III network.

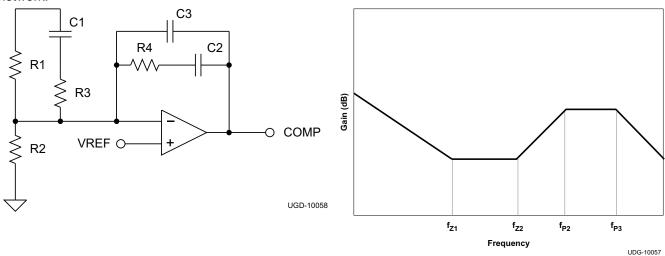


Figure 15. Type III Compensation Network Configuration Schematic

Figure 16. Type III Compensation Gain Plot and Zero/Pole Placement

$$G_{EA} = \frac{\left(1 + s \times C_{1} \times (R_{1} + R_{3})\right)\left(1 + s \times R_{4} \times C_{2}\right)}{\left(s \times R_{1} \times (C_{2} + C_{3})\right) \times \left(1 + s \times C_{1} \times R_{3}\right) \times \left(1 + s \times R_{4} \frac{C_{2} \times C_{3}}{C_{2} + C_{3}}\right)}$$
(15)

$$f_{Z1} = \frac{1}{2 \times \pi \times R_4 \times C_2} \tag{16}$$

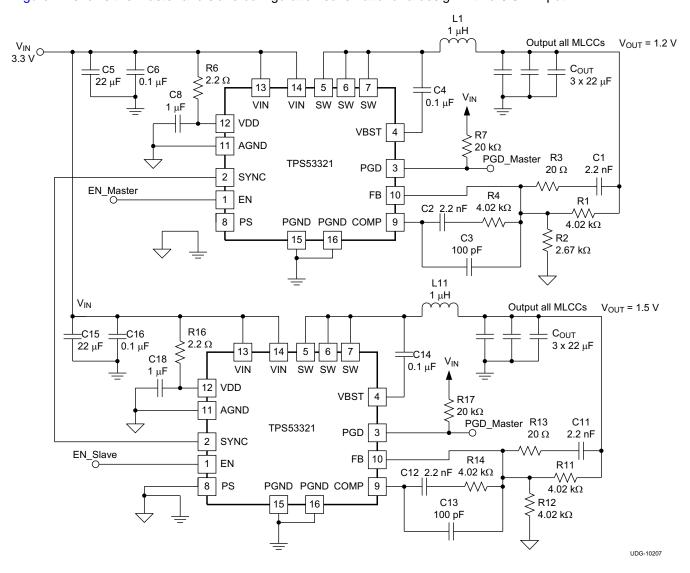
$$f_{Z2} = \frac{1}{2 \times \pi \times (R_1 + R_3) \times C_1} \cong \frac{1}{2 \times \pi \times R_1 \times C_1}$$
(17)

$$f_{\mathsf{P}1} = 0 \tag{18}$$

$$f_{P2} = \frac{1}{2 \times \pi \times R_3 \times C_1} \tag{19}$$

$$f_{P3} = \frac{1}{2 \times \pi \times R_4 \times \left(\frac{C_2 \times C_3}{C_2 + C_3}\right)} \cong \frac{1}{2 \times \pi \times R_4 \times C_3}$$
(20)

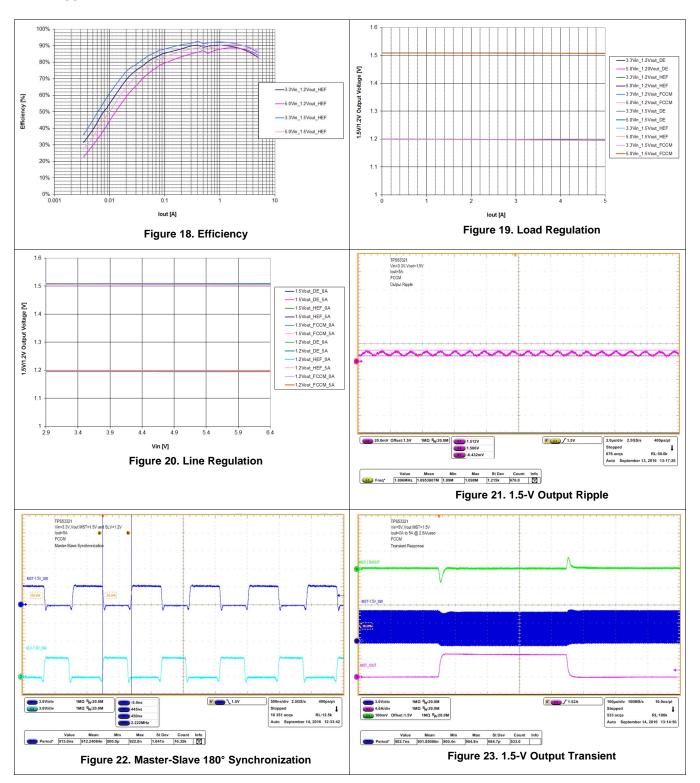
Draduat Folder Links, TDC5


Copyright © 2010-2016, Texas Instruments Incorporated

The two zeros can be placed near the double pole frequency to cancel the response from the double pole. One pole can be used to cancel ESR zero, and the other non-zero pole can be placed at half switching frequency to attenuate the high frequency noise and switching ripple. Suitable values can be selected to achieve a compromise between high phase margin and fast response. A phase margin higher than 45 degrees is required for stable operation.

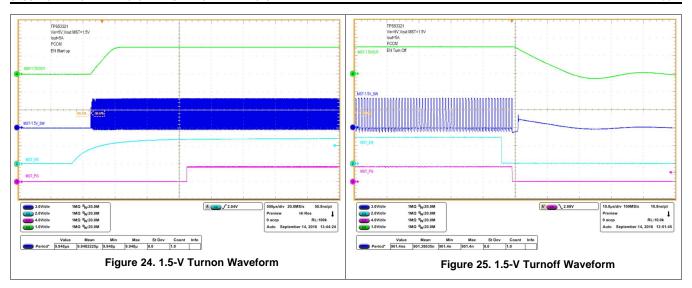
For DCM operation, a C3 between 56 pF and 150 pF is recommended for output capacitance between 20 μ F to 200 μ F.

Figure 17 shows the master and slave configuration schematic for a design with a 3.3-V input.



Copyright © 2016, Texas Instruments Incorporated

Figure 17. Master and Slave Configuration Schematic


8.2.3 Application Curves

Copyright © 2010–2016, Texas Instruments Incorporated

Submit Documentation Feedback

9 Power Supply Recommendations

The TPS53321 devices are designed to operate from an input voltage supply range between 2.9 V and 6 V (2.9 V to 3.5 V biased). This input supply must be well regulated. Proper bypassing of input supplies and internal regulators is also critical for noise performance, as is PCB layout and grounding scheme. See the recommendations in *Layout*.

Submit Documentation Feedback

Copyright © 2010–2016, Texas Instruments Incorporated

10 Layout

10.1 Layout Guidelines

Good layout is essential for stable power supply operation. Follow these guidelines for a clean PCB layout:

- Separate the power ground and analog ground planes. Connect them together at one location.
- Use four vias to connect the thermal pad to power ground.
- Place VIN and VDD decoupling capacitors as close to the device as possible.
- Use wide traces for V_{IN}, V_{OUT}, PGND, and SW. These nodes carry high current and also serve as heat sinks.
- Place feedback and compensation components as close to the device as possible.
- Keep analog signals (FB, COMP) away from noisy signals (SW, SYNC, VBST).
- See TPS53321 evaluation module for a layout example.

Figure 26 shows and example layout for the TPS53321.

10.2 Layout Example

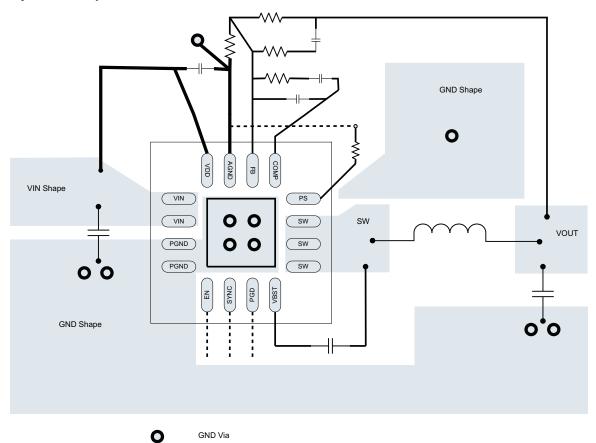


Figure 26. TPS53321 Layout Example

Etch under component

11 Device and Documentation Support

11.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 Trademarks

SmoothPWM, Eco-Mode, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

14-Mar-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS53321RGTR	ACTIVE	QFN	RGT	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	3321	Samples
TPS53321RGTT	ACTIVE	QFN	RGT	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	3321	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

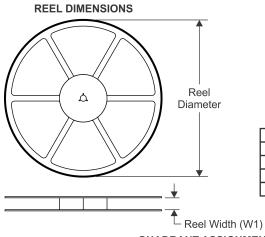
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

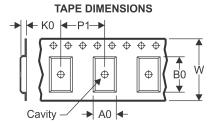
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM


14-Mar-2016


In no event shall TI's liabilit	ty arising out of such information	exceed the total purchase price	ce of the TI part(s) at issue in th	is document sold by TI to Cu	stomer on an annual basis.

PACKAGE MATERIALS INFORMATION

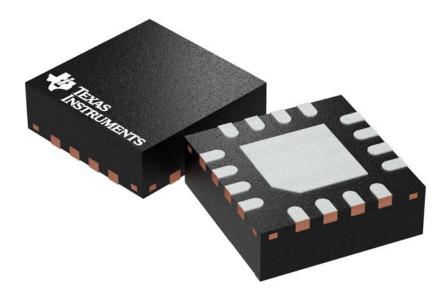
www.ti.com 14-Mar-2016

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

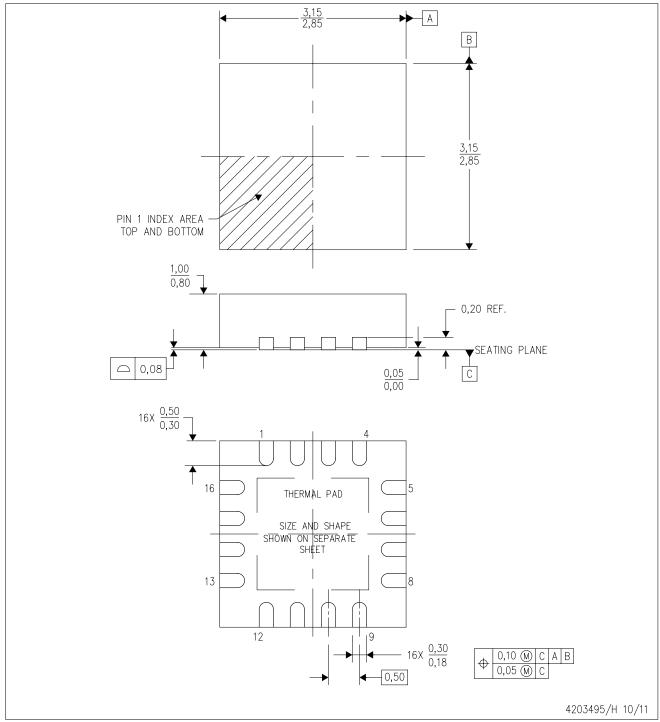
*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS53321RGTR	QFN	RGT	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS53321RGTT	QFN	RGT	16	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

www.ti.com 14-Mar-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
TPS53321RGTR	QFN	RGT	16	3000	367.0	367.0	35.0	
TPS53321RGTT	QFN	RGT	16	250	210.0	185.0	35.0	


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

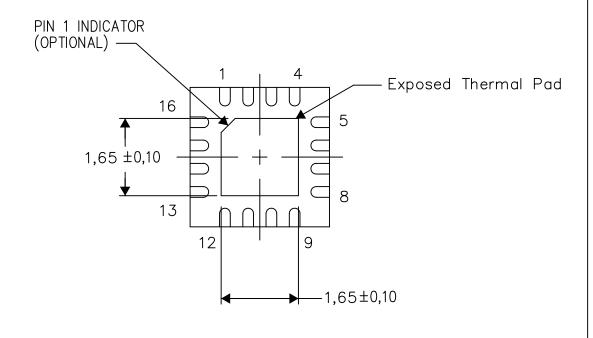
RGT (S-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- This drawing is subject to change without notice.
- Quad Flatpack, No-leads (QFN) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RGT (S-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

4206349-7/Z 08/15

NOTE: All linear dimensions are in millimeters

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.