

OPA388, OPA2388, OPA4388

SBOS777 - DECEMBER 2016

OPAx388 Precision, Zero-Drift, Zero-Crossover, True Rail-to-Rail Input/Output, **Operational Amplifiers**

Features

Ultra-Low Offset Voltage: ±0.25 µV

Zero-Drift: ±0.005 µV/°C

Zero-Crossover: 140-dB CMRR True RRIO

Low Noise: 7.0 nV√Hz at 1 kHz

No 1/f Noise: 140 nV_{PP} (0.1 Hz to 10 Hz)

Fast Settling: 2 us (1 V to 0.01%)

Gain Bandwidth: 10 MHz Single Supply: 2.5 V to 5.5 V

Dual Supply: ±1.25 V to ±2.75 V

True Rail-to-Rail Input and Output

EMI/RFI Filtered Inputs

Industry-Standard Packages:

Single in SOIC-8, SOT-23-5, and VSSOP-8

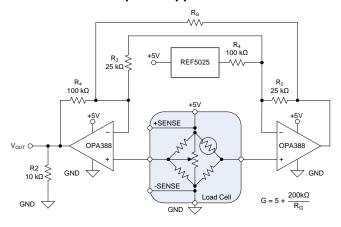
Dual in SOIC-8 and VSSOP-8

Quad in SOIC-14 and TSSOP-14

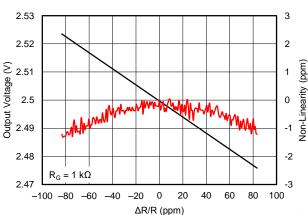
2 Applications

- **Bridge Amplifiers**
- Strain Gauges
- Test Equipment
- **Current Shunt Measurement**
- Thermocouples, Thermopiles
- **Electronic Scales**
- Medical Instrumentation
- **Resistor Thermal Detectors**
- Precision Active Filters

3 Description


The OPAx388 (OPA388, OPA2388, and OPA4388) series of precision operational amplifiers are ultra-low noise, fast-settling, zero-drift, zero-crossover devices that provide rail-to-rail input and output operation. These features and excellent ac performance, combined with only 0.25 µV of offset and 0.005 µV/°C of drift over temperature, makes the OPAx388 ideal for driving high-precision, analog-to-digital converters (ADCs) or buffering the output of high-resolution, digital-to-analog converters (DACs). This design results in superior performance when driving analogto-digital converters (ADCs) without degradation of linearity. The OPA388 (single version) is available in the VSSOP-8, SOT23-5, and SOIC-8 packages. The OPA2388 (dual version) is offered in the VSSOP-8 and SO-8 packages. The OPA4388 (quad version) is offered in the TSSOP-14 and SO-14 packages. All versions are specified over the extended industrial temperature range (-40°C to +125°C).

Device Information⁽¹⁾


PART NUMBER	PACKAGE	BODY SIZE (NOM)			
OPA388	SOIC (8)	4.90 mm × 3.90 mm			
	SOT-23 (5)	2.90 mm × 1.60 mm			
	VSSOP (8)	3.00 mm × 3.00 mm			
OPA2388	SOIC (8)	4.90 mm × 3.90 mm			
UPA2300	VSSOP (8)	3.00 mm × 3.00 mm			
ODA 4000	SOIC (14)	8.65 mm x 3.90 mm			
OPA4388	TSSOP (14)	5.00 mm x 4.40 mm			

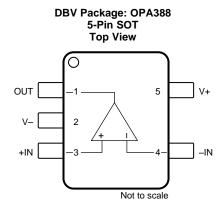
(1) For all available packages, see the package option addendum at the end of the data sheet.

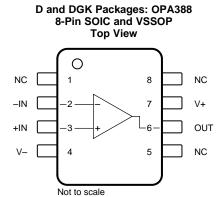
OPA388 in a High-CMRR, Instrumentation **Amplifier Application**

OPA388 Allows Precision. Low-Error Measurements

Table of Contents

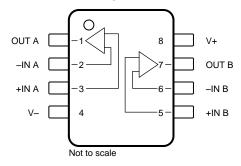
JPA388, UPA2388, UPA4388	
BOS777 - DECEMBER 2016	www.ti.com

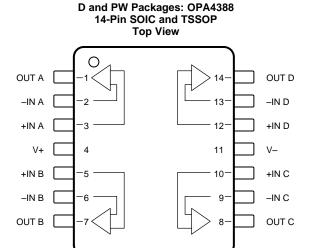

1	Features 1	8 Application and Implementation 1	8
2	Applications 1	8.1 Application Information 1	8
3	Description 1	8.2 Typical Application 1	
4	Revision History2	8.3 System Examples	0
5	Pin Configuration and Functions	9 Power Supply Recommendations 2	2
6	Specifications5	10 Layout 2	3
•	6.1 Absolute Maximum Ratings	10.1 Layout Guidelines2	3
	6.2 ESD Ratings	10.2 Layout Example 2	3
	6.3 Recommended Operating Conditions	11 Device and Documentation Support 2	4
	6.4 Thermal Information: OPA3885	11.1 Device Support2	4
	6.5 Electrical Characteristics: V _S = ±1.25 V to ±2.75 V	11.2 Documentation Support	4
	(V _S = 2.5 to 5.5 V)6	11.3 Related Links 2	4
	6.6 Typical Characteristics 8	11.4 Receiving Notification of Documentation Updates 2	4
	6.7 Typical Characteristics9	11.5 Community Resources2	4
7	Detailed Description 15	11.6 Trademarks2	5
	7.1 Overview 15	11.7 Electrostatic Discharge Caution 2	5
	7.2 Functional Block Diagram	11.8 Glossary 2	5
	7.3 Feature Description	12 Mechanical, Packaging, and Orderable	
	7.4 Device Functional Modes	Information 2	5


4 Revision History

DATE	REVISION	NOTES
December 2016	*	Initial release.

5 Pin Configuration and Functions




Pin Functions: OPA388

	Till Tulictions. Of A300						
	PIN						
	OPA	OPA388		DESCRIPTION			
NAME	D (SOIC), DGK (VSSOP)	DBV (SOT)	I/O	DECOM! HON			
-IN	2	4	I	Inverting input			
+IN	3	3	I	Noninverting input			
NC	1, 5, 8	_	_	No internal connection (can be left floating)			
OUT	6	1	0	Output			
V-	4	2	_	Negative (lowest) power supply			
V+	7	5	_	Positive (highest) power supply			

D and DGK Packages: OPA2388 8-Pin SOIC and VSSOP Top View

Not to scale

Pin Functions: OPA2388 and OPA4388

	PIN		PIN				
	OPA2388	OPA4388	//O	DESCRIPTION			
NAME	D (SOIC), DGK (VSSOP)	D (SOIC), PW (TSSOP)		Inverting input, channel A Inverting input, channel B Inverting input, channel C Inverting input, channel D Noninverting input, channel A Noninverting input, channel B Noninverting input, channel C Noninverting input, channel C Output, channel A Output, channel B			
–IN A	2	2	I	Inverting input, channel A			
–IN B	6	6	I	Inverting input, channel B			
–IN C		9	1	Inverting input,,channel C			
–IN D		13	1	Inverting input, channel D			
+IN A	3	3	1	Noninverting input, channel A			
+IN B	5	5	I	Noninverting input, channel B			
+IN C		10	I	Noninverting input, channel C			
+IN D		12	1	Noninverting input, channel D			
OUT A	1	1	0	Output, channel A			
OUT B	7	7	0	Output, channel B			
OUT C	_	8	0	Output, channel C			
OUT D	_	14	0	Output, channel D			
V-	4	11	_	Negative (lowest) power supply			
V+	8	4	_	Positive (highest) power supply			

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
Supply voltage, V _S = (V+) - (V-) Signal input pins Output short circuit (2) Temperature	Single-supply			6	V
(V+) - (V-)	Dual-supply			±3	V
	Valtage	Common-mode	(V-) - 0.5	(V+) + 0.5	V
Signal input pins	Voltage	Differential		±0.5	V
	Current	·		±10	mA
Output short circuit (2)			Conti	nuous	
	Operating, T _A		-55	150	
Temperature	Junction, T _J			150	°C
	Storage, T _{stg}		-65	150	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Floatroatatic disaboras	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±4000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
Supply voltage V (V)	Single-supply	2.5	5.5	V
Supply voltage, $V_S = (V+) - (V-)$	Dual-supply	±1.25	±2.75	V
Specified temperature		-40	125	°C

6.4 Thermal Information: OPA388

		OPA388	
	THERMAL METRIC ⁽¹⁾	D (SOIC)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	116	°C/W
$R_{\theta JC(top)}$	Junction-to-case(top) thermal resistance	60	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	56	°C/W
ΨЈТ	Junction-to-top characterization parameter	12.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	55.9	°C/W
$R_{\theta JC(bot)}$	Junction-to-case(bottom) thermal resistance	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ Short-circuit to ground, one amplifier per package.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

TEXAS INSTRUMENTS

6.5 Electrical Characteristics: $V_S = \pm 1.25 \text{ V}$ to $\pm 2.75 \text{ V}$ ($V_S = 2.5 \text{ to } 5.5 \text{ V}$)

at T_A = 25°C, V_{CM} = V_{OUT} = V_S / 2, and R_{LOAD} = 10 k Ω connected to V_S / 2 (unless otherwise noted)

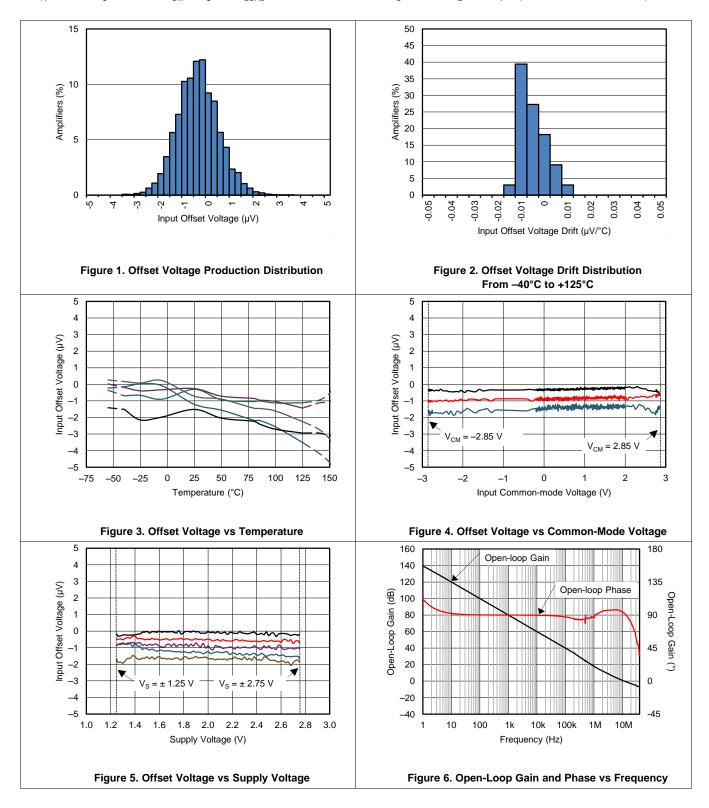
	PARAMETER	TEST CONDITI	ONS	MIN	TYP	MAX	UNIT	
OFFSET V	OLTAGE							
V _{OS}	Input offset voltage				±0.25	±5	μV	
VOS	input onset voltage	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$				±7.5	μν	
dV _{OS} /dT	Input offset voltage drift	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			±0.005	±0.05	μV/°C	
PSRR	Power-supply rejection ratio	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±0.1	±1	μV/V	
INPUT BIA	AS CURRENT							
					±30	±350	pА	
I _B	Input bias current		$T_A = 0$ °C to +85°C			±400		
		$R_{IN} = 100 \text{ k}\Omega$	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±700		
					±60	±700	pA	
los	Input offset current		$T_A = 0$ °C to +85°C			±800		
			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±800		
NOISE								
E _N	Input voltage noise	f = 0.1 Hz to 10 Hz			0.14		μV _{PP}	
			= 10 Hz		7			
e _N	Input voltage noise density	f = 100 Hz			7		nV/√ Hz	
		f = 1 kHz			7			
	Input ourrent poice density	f = 10 kHz			7		fΛ/#Ы¬	
INPUT VO	Input current noise density	f = 1 kHz			100		fA/rtHz	
INFUI VO	Common-mode voltage							
V_{CM}	range			(V-) - 0.1		(V+) + 0.1	V	
		(V–) – 0.1 V < V _{CM} < (V+) + 0.1 V	V _S = ±1.25 V	124	138			
	(V		V _S = ±2.75 V	124	140			
CMRR	Common-mode rejection ratio	$(V-) < V_{CM} < (V+) + 0.1 V,$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	V _S = ±1.25 V	114	134		dB	
		$(V-) - 0.05 \text{ V} < V_{CM} < (V+) + 0.1 \text{ V},$ $T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$	V _S = ±2.75 V	124	140			
INPUT IMP	PEDANCE							
z _{id}	Differential input impedance				100 2		$MΩ \parallel pF$	
z _{ic}	Common-mode input impedance				60 4.5		TΩ pF	
OPEN-LO	OP GAIN			·				
		$(V-) + 0.1 V < V_O < (V+) - 0.1 V, R_{LO}$	$AD = 10 \text{ k}\Omega$	126	148			
Δ	Open leen veltege gein	$(V-) + 0.1 V < V_O < (V+) - 0.1 V, R_{LO}$ $T_A = -40$ °C to +125°C	$_{AD}$ = 10 k Ω ,	120	126		dB	
A _{OL}	Open-loop voltage gain	$(V-) + 0.2 V < V_O < (V+) - 0.2 V, R_{LO}$	$AD = 2 k\Omega$	126	148		uБ	
		$(V-) + 0.25 \text{ V} < V_O < (V+) - 0.25 \text{ V}, R_{LOAD} = 2 \text{ k}\Omega,$ T _A = -40°C to +125°C		120	126			
FREQUEN	ICY RESPONSE							
GBW	Unity-gain bandwidth				10		MHz	
SR	Slew rate	G = +1, 4-V step			5		V/µs	
THD+N	Total harmonic distortion + noise	G = 1, f = 1 kHz, V _O = 1 V _{RMS}	-		0.0005%			
	Cattling time	To 0.1%	$V_S = \pm 2.5 \text{ V, G} = +1,$ 1-V step		0.75			
ts	Settling time	To 0.01%	V _S = ±2.5 V, G = +1, 1-V step		2		μs	
t _{OR}	Overload recovery time	$V_{IN} \times G = V_{S}$			10		μs	

Electrical Characteristics: $V_S = \pm 1.25 \text{ V}$ to $\pm 2.75 \text{ V}$ ($V_S = 2.5 \text{ to } 5.5 \text{ V}$) (continued)

at T_A = 25°C, V_{CM} = V_{OUT} = V_S / 2, and R_{LOAD} = 10 k Ω connected to V_S / 2 (unless otherwise noted)

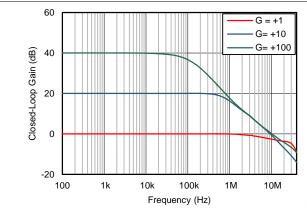
	PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
OUTPUT	Ť						
			No load		1	15	
		Positive rail	$R_{LOAD} = 10 \text{ k}\Omega$		5	20	
			$R_{LOAD} = 2 k\Omega$		20	50	
V_{O}	Vo Voltage output swing from rail		No load		5	15	mV
		Negative rail	$R_{LOAD} = 10 \text{ k}\Omega$		10	20	
		$R_{LOAD} = 2 k\Omega$		40	60		
		$T_A = -40$ °C to +125°C, both rails, $R_{LOAD} = 10 \text{ k}\Omega$			10		25
	Ob and alimoid account	V _S = 5.5 V			±60		mA
I _{SC}	Short-circuit current	-circuit current $V_S = 2.5 \text{ V}$			±30		
C _{LOAD}	Capacitive load drive			See Typica	al Characteris	stics	
Z _O	Open-loop output impedance	f = 1 MHz, I _O = 0 A, see Figure 23			150		Ω
POWER	SUPPLY			<u>'</u>			
	Quiescent current per	T 4000 / 40500 / 0 A	$V_S = \pm 1.25 \text{ V}$ ($V_S = 2.5 \text{ V}$)		1.7	2.4	
IQ	amplifier	$T_A = -40$ °C to +125°C, $I_O = 0$ A	$V_S = \pm 2.75 \text{ V}$ ($V_S = 5.5 \text{ V}$)		1.9	2.6	mA
TEMPER	RATURE					·	
T _A	Specified range			-40		125	°C

6.6 Typical Characteristics


Table 1. Table of Graphs

DESCRIPTION	FIGURE
Offset Voltage Production Distribution	Figure 1
Offset Voltage Drift Distribution From -40°C to +125°C	Figure 2
Offset Voltage vs Temperature	Figure 3
Offset Voltage vs Common-Mode Voltage	Figure 4
Offset Voltage vs Power Supply	Figure 5
Open-Loop Gain and Phase vs Frequency	Figure 6
Closed-Loop Gain and Phase vs Frequency	Figure 7
Input Bias Current vs Common-Mode Voltage	Figure 8
Input Bias Current vs Temperature	Figure 9
Output Voltage Swing vs Output Current (Maximum Supply)	Figure 10
CMRR and PSRR vs Frequency	Figure 11
CMRR vs Temperature	Figure 12
PSRR vs Temperature	Figure 13
0.1-Hz to 10-Hz Noise	Figure 14
Input Voltage Noise Spectral Density vs Frequency	Figure 15
THD+N Ratio vs Frequency	Figure 16
THD+N vs Output Amplitude	Figure 17
Spectral Content	Figure 18, Figure 19
Quiescent Current vs Supply Voltage	Figure 20
Quiescent Current vs Temperature	Figure 21
Open-Loop Gain vs Temperature	Figure 22
Open-Loop Output Impedance vs Frequency	Figure 23
Small-Signal Overshoot vs Capacitive Load (10-mV Step)	Figure 24
No Phase Reversal	Figure 25
Positive Overload Recovery	Figure 26
Negative Overload Recovery	Figure 27
Small-Signal Step Response (10-mV Step)	Figure 28, Figure 29
Large-Signal Step Response (4-V Step)	Figure 30 , Figure 31
Settling Time	Figure 32, Figure 33
Short-Circuit Current vs Temperature	Figure 34
Maximum Output Voltage vs Frequency	Figure 35
EMIRR vs Frequency	Figure 36

6.7 Typical Characteristics


at T_A = 25°C, V_S = ±2.5 V, V_{CM} = V_S / 2, R_{LOAD} = 10 k Ω connected to V_S / 2, and C_L = 100 pF (unless otherwise noted)

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = \pm 2.5$ V, $V_{CM} = V_S / 2$, $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, and $C_L = 100$ pF (unless otherwise noted)

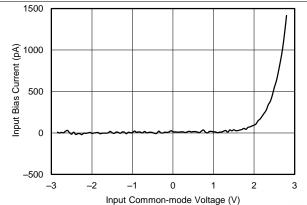
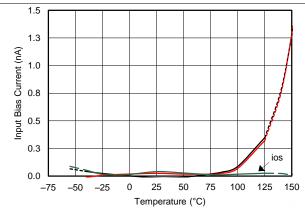



Figure 7. Closed-Loop Gain and Phase vs Frequency

Figure 8. Input Bias Current vs Common-Mode Voltage

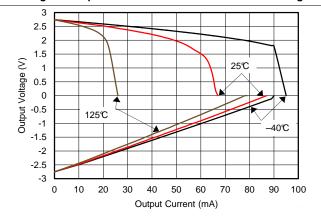
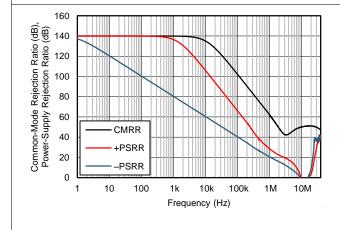



Figure 9. Input Bias Current vs Temperature

Figure 10. Output Voltage Swing vs Output Current (Maximum Supply)

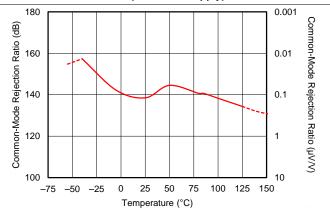
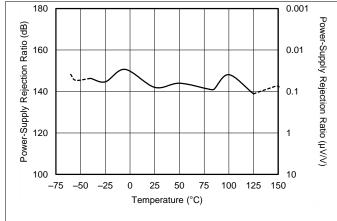



Figure 11. CMRR and PSRR vs Frequency

Figure 12. CMRR vs Temperature

at $T_A = 25$ °C, $V_S = \pm 2.5$ V, $V_{CM} = V_S$ / 2, $R_{LOAD} = 10$ k Ω connected to V_S / 2, and $C_L = 100$ pF (unless otherwise noted)

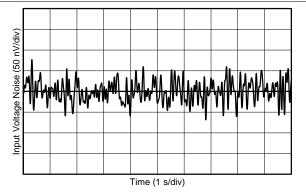
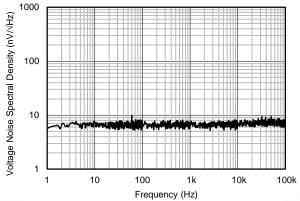
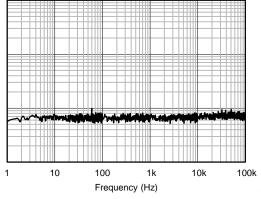




Figure 13. PSRR vs Temperature

Figure 14. 0.1-Hz to 10-Hz Noise

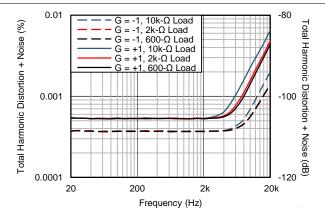
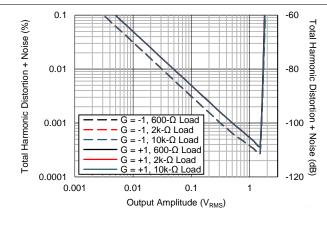
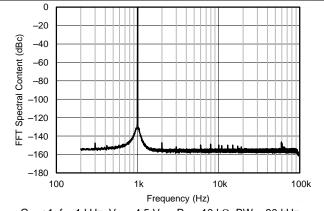
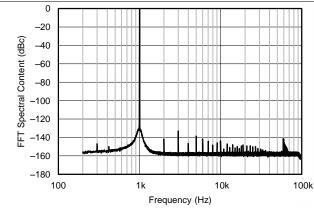




Figure 15. Input Voltage Noise Spectral Density vs Frequency

Figure 16. THD+N Ratio vs Frequency



 $G=+1,\,f=1$ kHz, $V_O=4.5$ $V_{PP},\,R_L=10$ k $\Omega,\,BW=90$ kHz

Figure 17. THD+N vs Output Amplitude

Figure 18. Spectral Content (With 10-k Ω Load)

at $T_A = 25$ °C, $V_S = \pm 2.5$ V, $V_{CM} = V_S$ / 2, $R_{LOAD} = 10$ k Ω connected to V_S / 2, and $C_L = 100$ pF (unless otherwise noted)

G = +1, f = 1 kHz, V_O = 4.5 V_{PP} , R_L = 2 $k\Omega$, BW = 90 kHz

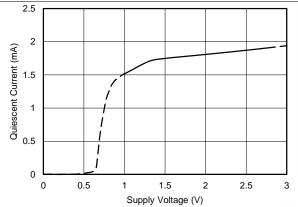


Figure 20. Quiescent Current vs Supply Voltage

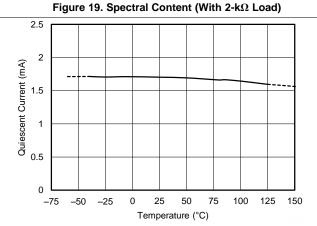


Figure 21. Quiescent Current vs Temperature

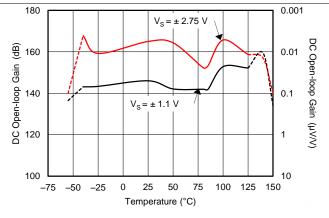


Figure 22. Open-Loop Gain vs Temperature

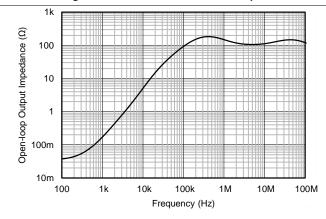


Figure 23. Open-Loop Output Impedance vs Frequency

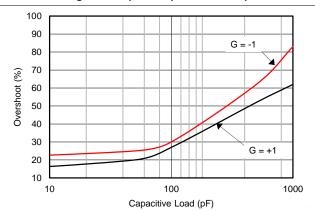
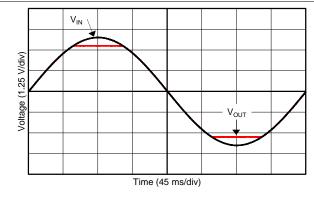



Figure 24. Small-Signal Overshoot vs Capacitive Load (10-mV Step)

at $T_A = 25$ °C, $V_S = \pm 2.5$ V, $V_{CM} = V_S / 2$, $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, and $C_L = 100$ pF (unless otherwise noted)

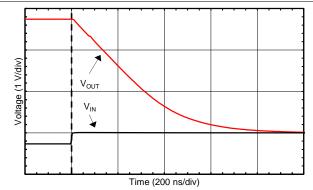
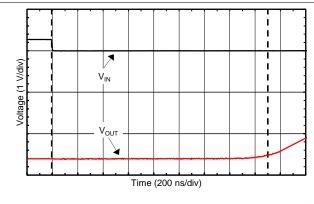



Figure 25. No Phase Reversal

Figure 26. Positive Overload Recovery

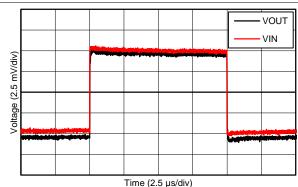
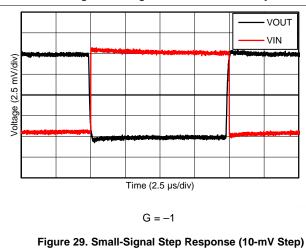



Figure 27. Negative Overload Recovery

Figure 28. Small-Signal Step Response (10-mV Step)

G = +1

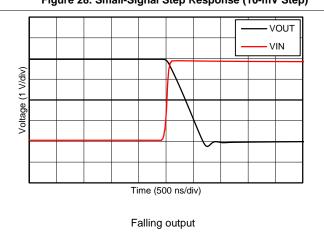
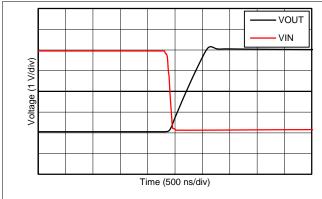
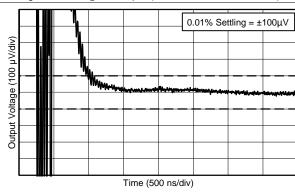



Figure 30. Large-Signal Step Response (4-V Step)



at $T_A = 25$ °C, $V_S = \pm 2.5$ V, $V_{CM} = V_S / 2$, $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, and $C_L = 100$ pF (unless otherwise noted)

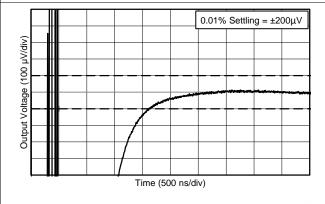

Rising output

Figure 31. Large-Signal Step Response (4-V Step)

0.01% settling = $\pm 100 \mu V$

Figure 32. Settling Time (1-V Positive Step)

0.01% settling = $\pm 200 \mu V$

100 $I_{\text{SC}}, \, \text{Sink}$ 90 80 Short-Circuit Current (mA) 70 60 50 I_{SC}, Source 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 -75 Temperature (°C)

Figure 33. Settling Time (1-V Negative Step)

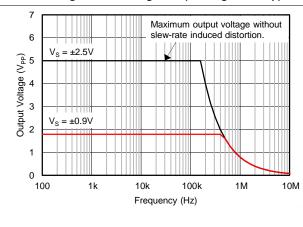


Figure 34. Short-Circuit Current vs Temperature



Figure 35. Maximum Output Voltage vs Frequency



7 Detailed Description

7.1 Overview

The OPAx388 family of zero-drift amplifiers is engineered with the unique combination of a proprietary precision auto-calibration technique paired with a low-noise, low-ripple, input charge pump. These amplifiers offer ultra-low input offset voltage and drift and achieve excellent input and output dynamic linearity. The OPAx388 operates from 2.5 V to 5.5 V, is unity-gain stable, and is suitable for a wide range of general-purpose and precision applications. The integrated, low-noise charge pump allows true rail-to-rail input common-mode operation without distortion associated with complementary rail-to-rail input topologies (input crossover distortion). The OPAx388 strengths also include 10-MHz bandwidth, 7-nV/\degreentharder{Hz} noise spectral density, and no 1/f noise, making the OPAx388 optimal for interfacing with sensor modules and buffering high-fidelity, digital-to-analog converters (DACs).

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

7.3 Feature Description

7.3.1 Operating Voltage

The OPA3x88 family of operational amplifiers can be used with single or dual supplies from an operating range of $V_S = 2.5 \text{ V}$ (±1.25 V) up to 5.5 V (±2.75 V). Supply voltages greater than 7 V can permanently damage the device (see *Absolute Maximum Ratings*). Key parameters that vary over the supply voltage or temperature range are shown in the *Typical Characteristics* section.

Copyright © 2016, Texas Instruments Incorporated

Feature Description (continued)

7.3.2 Input Voltage and Zero-Crossover Functionality

The OPAx388 input common-mode voltage range extends 0.1 V beyond the supply rails. This amplifier family is designed to cover the full range without the troublesome transition region found in some other rail-to-rail amplifiers. Operating a complementary rail-to-rail input amplifier with signals traversing the transition region results in unwanted non-linear behavior and polluted spectral content. Figure 37 and Figure 38 contrast the performance of a traditional complementary rail-to-rail input stage amplifier with the performance of the zero-crossover OPA388. Significant harmonic content and distortion is generated during the differential pair transition (such a transition does not exist in the OPA388). Crossover distortion is eliminated through the use of a single differential pair coupled with an internal low-noise charge pump. The OPAx388 maintains noise, bandwidth, and offset performance throughout the input common-mode range, thus reducing printed circuit board (PCB) and bill of materials (BOM) complexity through the reduction of power-supply rails.

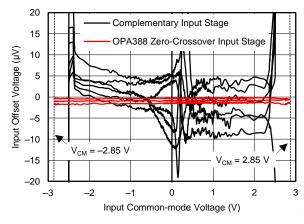
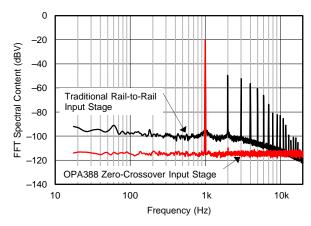
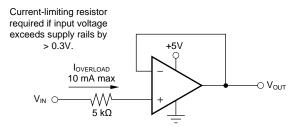


Figure 37. Input Crossover Distortion Nonlinearity




Figure 38. Input Crossover Distortion Spectral Content

16

Feature Description (continued)

Typically, input bias current is approximately ±30 pA. Input voltages exceeding the power supplies, however, can cause excessive current to flow into or out of the input pins. Momentary voltages greater than the power supply can be tolerated if the input current is limited to 10 mA. This limitation is easily accomplished with an input resistor, as shown in Figure 39.

Copyright © 2016, Texas Instruments Incorporated

Figure 39. Input Current Protection

7.3.3 Input Differential Voltage

The typical input bias current of the OPAx388 during normal operation is approximately 30 pA. In overdriven conditions, the bias current can increase significantly. The most common cause of an overdriven condition occurs when the operational amplifier is outside of the linear range of operation. When the output of the operational amplifier is driven to one of the supply rails, the feedback loop requirements cannot be satisfied and a differential input voltage develops across the input pins. This differential input voltage results in activation of parasitic diodes inside the front-end input chopping switches that combine with $10-k\Omega$ electromagnetic interference (EMI) filter resistors to create the equivalent circuit shown in Figure 40. Notice that the input bias current remains within specification in the linear region.

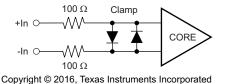


Figure 40. Equivalent Input Circuit

7.3.4 Internal Offset Correction

The OPA388 family of operational amplifiers uses an auto-calibration technique with a time-continuous, 200-kHz operational amplifier in the signal path. This amplifier is zero-corrected every 5 μ s using a proprietary technique. At power-up, the amplifier requires approximately 1 ms to achieve the specified V_{OS} accuracy. This design has no aliasing or flicker noise.

7.3.5 EMI Susceptibility and Input Filtering

Operational amplifiers vary in susceptibility to EMI. If conducted EMI enters the operational amplifier, the dc offset at the amplifier output can shift from its nominal value when EMI is present. This shift is a result of signal rectification associated with the internal semiconductor junctions. Although all operational amplifier pin functions can be affected by EMI, the input pins are likely to be the most susceptible. The OPAx388 operational amplifier family incorporates an internal input low-pass filter that reduces the amplifier response to EMI. Both common-mode and differential-mode filtering are provided by the input filter. The filter is designed for a cutoff frequency of approximately 20 MHz (–3 dB), with a rolloff of 20 dB per decade.

7.4 Device Functional Modes

The OPA388 has a single functional mode and is operational when the power-supply voltage is greater than 2.5 V (±1.25 V). The maximum specified power-supply voltage for the OPAx388 is 5.5 V (±2.75 V).

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The OPAx388 is a unity-gain stable, precision operational amplifier family free from unexpected output and phase reversal. The use of proprietary zero-drift circuitry gives the benefit of low input offset voltage over time and temperature, as well as lowering the 1/f noise component. As a result of the high PSRR, these devices work well in applications that run directly from battery power without regulation. The OPAx388 family is optimized for full rail-to-rail input, allowing for low-voltage, single-supply operation or split-supply use. These miniature, high-precision, low-noise amplifiers offer high-impedance inputs that have a common-mode range 100 mV beyond the supplies without input crossover distortion and a rail-to-rail output that swings within 5 mV of the supplies under normal test conditions. The OPAx388 series of precision amplifiers is suitable for upstream analog signal chain applications in low or high gains, as well as downstream signal chain functions such as DAC buffering.

8.2 Typical Application

This single-supply, low-side, bidirectional current-sensing solution detects load currents from -1 A to 1 A. The single-ended output spans from 110 mV to 3.19 V. This design uses the OPAx388 because of its low offset voltage and rail-to-rail input and output. One of the amplifiers is configured as a difference amplifier and the other amplifier provides the reference voltage.

Figure 41 shows the solution.

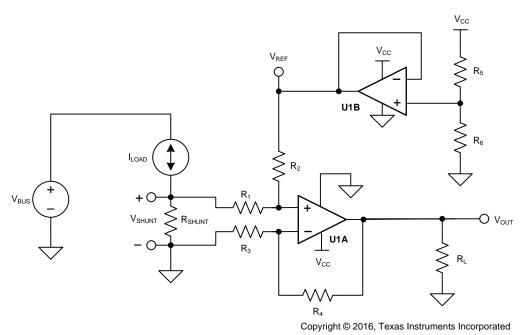


Figure 41. Bidirectional Current-Sensing Schematic

Typical Application (continued)

8.2.1 Design Requirements

This solution has the following requirements:

Supply voltage: 3.3 VInput: -1 A to 1 A

Output: 1.65 V ±1.54 V (110 mV to 3.19 V)

8.2.2 Detailed Design Procedure

The load current, I_{LOAD} , flows through the shunt resistor (R_{SHUNT}) to develop the shunt voltage, V_{SHUNT} . The shunt voltage is then amplified by the difference amplifier consisting of U1A and R_1 through R_4 . The gain of the difference amplifier is set by the ratio of R_4 to R_3 . To minimize errors, set $R_2 = R_4$ and $R_1 = R_3$. The reference voltage, V_{REF} , is supplied by buffering a resistor divider using U1B. The transfer function is given by Equation 1.

$$V_{OUT} = V_{SHUNT} \times Gain_{Diff\ Amp} + V_{REF}$$

where

•
$$V_{SHUNT} = I_{LOAD} \times R_{SHUNT}$$

$$Gain_{Diff_Amp} = \frac{R_4}{R_3}$$

$$V_{REF} = V_{CC} \times \left[\frac{R_6}{R_5 + R_6} \right]$$
 (1)

There are two types of errors in this design: offset and gain. Gain errors are introduced by the tolerance of the shunt resistor and the ratios of R_4 to R_3 and, similarly, R_2 to R_1 . Offset errors are introduced by the voltage divider (R_5 and R_6) and how closely the ratio of R_4 / R_3 matches R_2 / R_1 . The latter value affects the CMRR of the difference amplifier, ultimately translating to an offset error.

The value of V_{SHUNT} is the ground potential for the system load because V_{SHUNT} is a low-side measurement. Therefore, a maximum value must be placed on V_{SHUNT} . In this design, the maximum value for V_{SHUNT} is set to 100 mV. Equation 2 calculates the maximum value of the shunt resistor given a maximum shunt voltage of 100 mV and maximum load current of 1 A.

$$R_{SHUNT(Max)} = \frac{V_{SHUNT(Max)}}{I_{LOAD(Max)}} = \frac{100 \text{ mV}}{1 \text{ A}} = 100 \text{ m}\Omega$$
 (2)

The tolerance of R_{SHUNT} is directly proportional to cost. For this design, a shunt resistor with a tolerance of 0.5% was selected. If greater accuracy is required, select a 0.1% resistor or better.

The load current is bidirectional; therefore, the shunt voltage range is -100 mV to 100 mV. This voltage is divided down by R_1 and R_2 before reaching the operational amplifier, U1A. Take care to ensure that the voltage present at the noninverting node of U1A is within the common-mode range of the device. Therefore, use an operational amplifier, such as the OPA388, that has a common-mode range that extends below the negative supply voltage. Finally, to minimize offset error, note that the OPA388 has a typical offset voltage of merely $\pm 0.25~\mu V$ ($\pm 5~\mu V$ maximum).

Given a symmetric load current of -1 A to 1 A, the voltage divider resistors (R_5 and R_6) must be equal. To be consistent with the shunt resistor, a tolerance of 0.5% was selected. To minimize power consumption, $10\text{-k}\Omega$ resistors were used.

To set the gain of the difference amplifier, the common-mode range and output swing of the OPA388 must be considered. Equation 3 and Equation 4 depict the typical common-mode range and maximum output swing, respectively, of the OPA388 given a 3.3-V supply.

$$-100 \text{ mV} < V_{CM} < 3.4 \text{ V}$$
 (3)

$$100 \text{ mV} < V_{\text{OUT}} < 3.2 \text{ V}$$
 (4)

The gain of the difference amplifier can now be calculated as shown in Equation 5.

$$Gain_{Diff_Amp} = \frac{V_{OUT_Max} - V_{OUT_Min}}{R_{SHUNT} \times (I_{MAX} - I_{MIN})} = \frac{3.2 \text{ V} - 100 \text{ mV}}{100 \text{ m}\Omega \times [1 \text{ A} - (-1 \text{ A})]} = 15.5 \frac{\text{V}}{\text{V}}$$
(5)

Copyright © 2016, Texas Instruments Incorporated

Typical Application (continued)

The resistor value selected for R_1 and R_3 was 1 $k\Omega$. 15.4 $k\Omega$ was selected for R_2 and R_4 because this number is the nearest standard value. Therefore, the ideal gain of the difference amplifier is 15.4 V/V.

The gain error of the circuit primarily depends on R_1 through R_4 . As a result of this dependence, 0.1% resistors were selected. This configuration reduces the likelihood that the design requires a two-point calibration. A simple one-point calibration, if desired, removes the offset errors introduced by the 0.5% resistors.

8.2.3 Application Curve

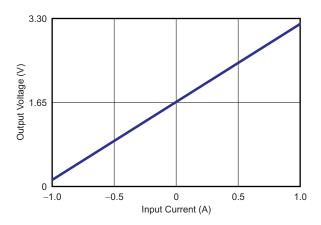
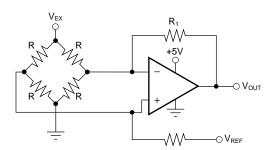



Figure 42. Bidirectional Current-Sensing Circuit Performance:
Output Voltage vs Input Current

8.3 System Examples

8.3.1 Single Operational Amplifier Bridge Amplifier

Figure 43 shows the basic configuration for a bridge amplifier.

Copyright © 2016, Texas Instruments Incorporated

Figure 43. Single Operational Amplifier Bridge Amplifier Schematic

20

System Examples (continued)

8.3.2 Precision, Low-Noise, DAC Buffer

The OPA388 can be used for a precision DAC buffer, as shown in Figure 44, in conjunction with the DAC8830.

The OPA388 provides an ultra-low drift, precision output buffer for the DAC. A wide range of DAC codes can be used in the linear region because the OPA388 employs zero-crossover technology. A precise reference is essential for maximum accuracy because the DAC8830 is a 16-bit converter.

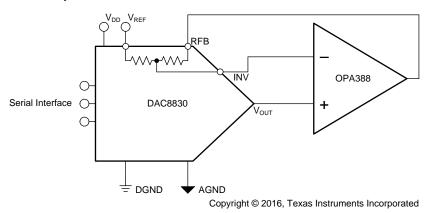


Figure 44. Precision DAC Buffer

8.3.3 Load Cell Measurement

Figure 45 shows the OPA388 in a high-CMRR dual-op amp instrumentation amplifier with a trim resistor and 6-wire load cell for precision measurement. Figure 46 illustrates the output voltage as a function of load cell resistance change, along with the nonlinearity of the system.

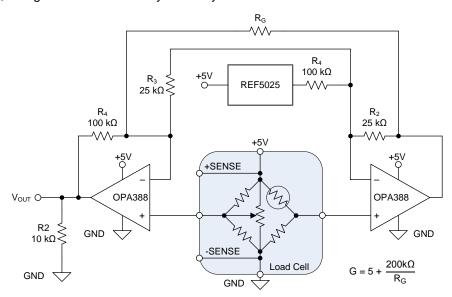


Figure 45. Load Cell Measurement Schematic

System Examples (continued)

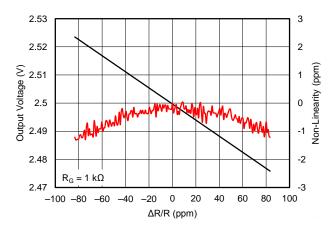


Figure 46. Load Cell Measurement Output

9 Power Supply Recommendations

The OPAx388 family of devices is specified for operation from 2.5 V to 5.5 V (±1.25 V to ±2.75 V). Parameters that can exhibit significant variance with regard to operating voltage are presented in the *Typical Characteristics* section.

10 Layout

10.1 Layout Guidelines

Paying attention to good layout practice is always recommended. Keep traces short and, when possible, use a printed-circuit board (PCB) ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1-µF capacitor closely across the supply pins. These guidelines must be applied throughout the analog circuit to improve performance and provide benefits such as reducing the electromagnetic interference (EMI) susceptibility.

For lowest offset voltage and precision performance, circuit layout and mechanical conditions must be optimized. Avoid temperature gradients that create thermoelectric (Seebeck) effects in the thermocouple junctions formed from connecting dissimilar conductors. These thermally-generated potentials can be made to cancel by assuring they are equal on both input terminals. Other layout and design considerations include:

- Use low thermoelectric-coefficient conditions (avoid dissimilar metals).
- Thermally isolate components from power supplies or other heat sources.
- Shield operational amplifier and input circuitry from air currents, such as cooling fans.

Following these guidelines reduces the likelihood of junctions being at different temperatures, which can cause thermoelectric voltage drift of $0.1 \,\mu\text{V/}^{\circ}\text{C}$ or higher, depending on materials used.

10.2 Layout Example

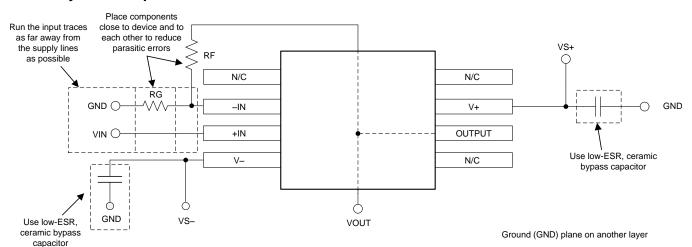


Figure 47. OPA388 Layout Example

Copyright © 2016, Texas Instruments Incorporated

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

11.1.1.1 TINA-TI™ (Free Software Download)

TINA-TI™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI™ is a free, fully-functional version of the TINA™ software, preloaded with a library of macromodels in addition to a range of both passive and active models. TINA-TI™ provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities.

Available as a free download from the Analog eLab Design Center, TINA-TITM offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic guick-start tool.

NOTE

These files require that either the TINA software (from DesignSoft™) or TINA-TI™ software be installed. Download the free TINA-TI™ software from the TINA-TI™ folder.

11.1.1.2 TI Precision Designs

The OPAx388 family is featured on TI Precision Designs, available online at www.ti.com/ww/en/analog/precisiondesigns/. TI Precision Designs are analog solutions created by TI's precision analog applications experts and offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits.

11.2 Documentation Support

11.2.1 Related Documentation

For related documentation see the following:

- Circuit Board Layout Techniques (SLOA089)
- DAC883x 16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters (SLAS449)

11.3 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
OPA388	Click here	Click here	Click here	Click here	Click here
OPA2388	Click here	Click here	Click here	Click here	Click here
OPA4388	Click here	Click here	Click here	Click here	Click here

11.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.5 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

Community Resources (continued)

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.6 Trademarks

TINA-TI, E2E are trademarks of Texas Instruments.
TINA, DesignSoft are trademarks of DesignSoft, Inc.
All other trademarks are the property of their respective owners.

11.7 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.8 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2016, Texas Instruments Incorporated

PACKAGE OPTION ADDENDUM

12-Jan-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
OPA388ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OPA388	Samples
OPA388IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	OPA388	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

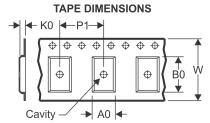
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

12-Jan-2017


n no event shall TI's liability aris	ing out of such information exceed the total	purchase price of the TI part(s) at	t issue in this document sold by	TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Dec-2016

TAPE AND REEL INFORMATION

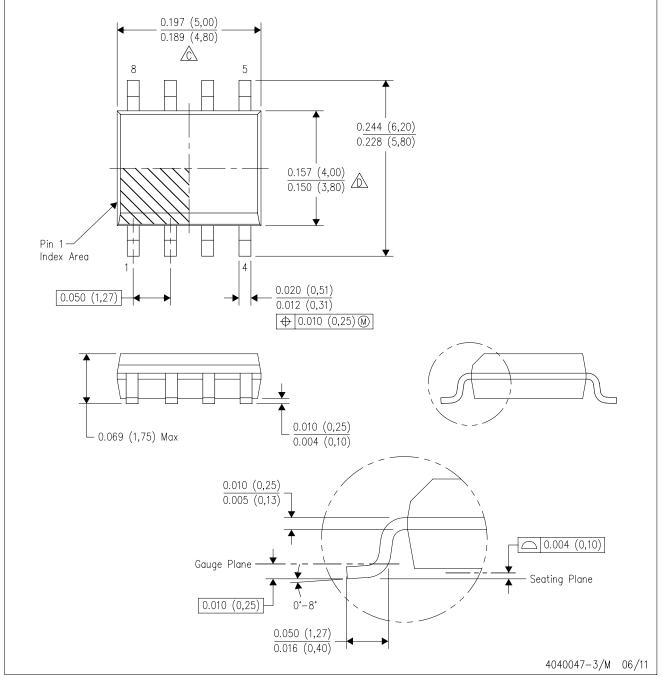
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA388IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 18-Dec-2016

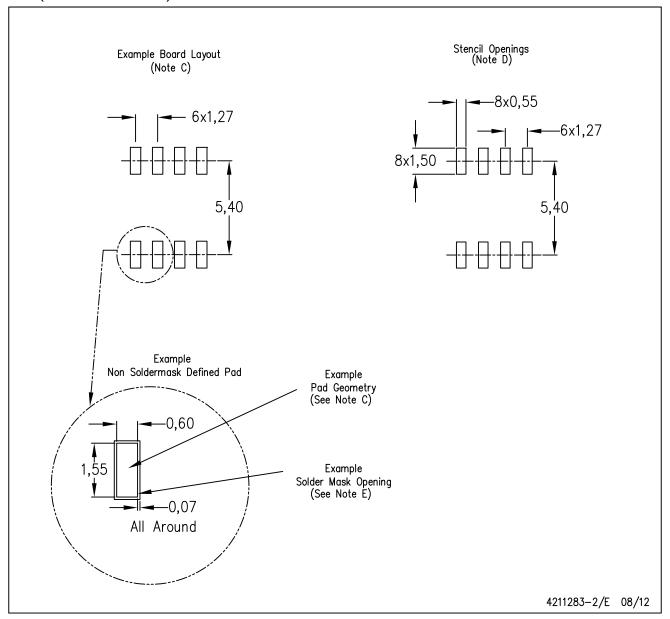


*All dimensions are nominal

Device	Package Type	Package Drawing	ckage Drawing Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
OPA388IDR	SOIC	D	8	2500	367.0	367.0	35.0	

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated