

Sample &

Buy

SCLS107F-DECEMBER 1982-REVISED SEPTEMBER 2016

Support &

Community

....

SNx4HC138 3-Line To 8-Line Decoders/Demultiplexers

Technical

Documents

1 Features

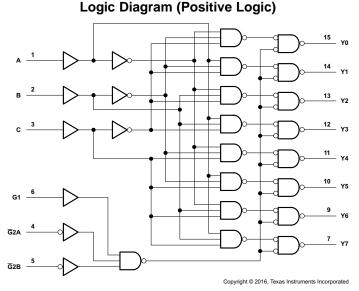
- Targeted Specifically for High-Speed Memory **Decoders and Data-Transmission Systems**
- Wide Operating Voltage Range (2 V to 6 V)
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 80-µA Maximum I_{CC}
- Typical t_{pd} = 15 ns
- ±4-mA Output Drive at 5 V
- Low Input Current of 1-µA Maximum
- Active Low Outputs (Selected Output is Low)
- Incorporate Three Enable Inputs to Simplify Cascading or Data Reception

2 Applications

- LED Displays
- Servers
- White Goods
- Power Infrastructure
- **Building Automation**
- Factory Automation

3 Description

Tools &


Software

The SNx4HC138 devices are designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, these decoders can be used to minimize the effects of system decoding. When employed with high-speed memories using a fast enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoders is negligible.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)						
SN74HC138D	SOIC (16)	9.90 mm x 3.90 mm						
SN74HC138DB	SSOP (16)	6.20 mm x 5.30 mm						
SN74HC138N	PDIP (16)	19.32 mm x 6.35 mm						
SN74HC138NS	SO (16)	10.20 mm x 5.30 mm						
SN74HC138PW	TSSOP (16)	5.00 mm x 4.40 mm						
SN54HC138J	CDIP (16)	21.34 mm x 6.92 mm						
SN54HC138W	CFP (16)	10.16 mm x 6.73 mm						
SN54HC138FK	LCCC (20)	8.89 mm x 8.89 mm						

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Pin numbers shown are for the D, DB, J, N, NS, PW, and W packages.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

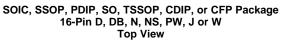
Table of Contents

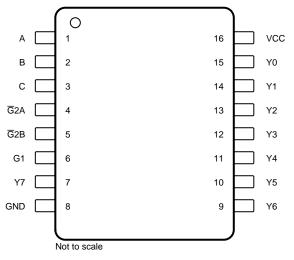
Feat	ures	1
App	lications	1
Revi	sion History	2
Pin (Configuration and Functions	3
Spec	cifications	4
6.1	Absolute Maximum Ratings	. 4
6.2	ESD Ratings: SN74HC138	. 4
6.3	Recommended Operating Conditions	. 4
6.4	Thermal Information: SN74HC138	. 5
6.5	Thermal Information: SN54HC138	. 5
6.6	Electrical Characteristics	. 5
6.7	Electrical Characteristics: SN74HC138	. <mark>6</mark>
6.8	Electrical Characteristics: SN54HC138	. <mark>6</mark>
6.9	Switching Characteristics	. <mark>6</mark>
6.10	Switching Characteristics: SN74HC138	. 7
6.11	Switching Characteristics: SN54HC138	
6.12	Typical Characteristic	. 7
Para	meter Measurement Information	8
Deta	iled Description	9
	Appl Desc Revi Pin 0 5pec 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 Para	 6.2 ESD Ratings: SN74HC138 6.3 Recommended Operating Conditions 6.4 Thermal Information: SN74HC138 6.5 Thermal Information: SN54HC138 6.6 Electrical Characteristics 6.7 Electrical Characteristics: SN74HC138 6.8 Electrical Characteristics: SN54HC138 6.9 Switching Characteristics: SN74HC138 6.10 Switching Characteristics: SN54HC138 6.11 Switching Characteristics: SN54HC138

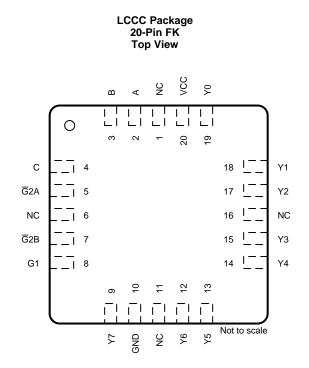
	8.1	Overview	9
	8.2	Functional Block Diagram	9
	8.3	Feature Description	9
	8.4	Device Functional Modes 1	10
9	App	lication and Implementation 1	1
	9.1	Application Information 1	11
	9.2	Typical Application 1	11
10	Pow	ver Supply Recommendations 1	2
11	Lay	out 1	2
	11.1	Layout Guidelines1	12
	11.2	Layout Example 1	12
12	Dev	ice and Documentation Support 1	3
	12.1	Documentation Support1	13
	12.2	Related Links 1	13
	12.3	Receiving Notification of Documentation Updates	13
	12.4	Community Resources1	13
	12.5	Trademarks 1	13
	12.6	Electrostatic Discharge Caution 1	13
	12.7	Glossary1	13
13	Mec	hanical, Packaging, and Orderable	
	Info	rmation 1	3

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Revision E (September 2003) to Revision F


Page


•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Deleted Ordering Information table; see POA at the end of the data sheet	
•	Changed $R_{\theta JA}$ values from 73 to 87.3 (D), from 82 to 104.3 (DB), from 67 to 54.8 (N), from 64 to 91.1 (NS), and from 108 to 114.6 (PW)	5

5 Pin Configuration and Functions

NC: No internal connection

Pin Functions

PIN				
NAME	SOIC, SSOP, PDIP, SO, TSSOP, CDIP, CFP	LCCC	I/O	DESCRIPTION
А	1	2	I	Select input A (least significant bit)
В	2	3	I	Select input B
С	3	4	I	Select input C (most significant bit)
G2A	4	5	I	Active low enable A
G2B	5	7	I	Active low enable B
G1	6	8	I	Active high enable
GND	8	10	_	Ground
NC	—	1, 6, 11, 16	_	No internal connection
V _{CC}	16	20	_	Supply voltage
Y0	15	19	0	Output 0 (least significant bit)
Y1	14	18	0	Output 1
Y2	13	17	0	Output 2
Y3	12	15	0	Output 3
Y4	11	14	0	Output 4
Y5	10	13	0	Output 5
Y6	9	12	0	Output 6
Y7	7	9	0	Output 7 (most significant bit)

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply voltage range, V _{CC}		-0.5	7	V
Input clamp current, I _{IK} ⁽²⁾	$V_{I} < 0 \text{ or } V_{I} > V_{CC}$		±20	mA
Output clamp current, I _{OK} ⁽²⁾	V_{O} < 0 or V_{O} > V_{CC}		±20	mA
Continuous output current, I _O	$V_{O} = 0$ to V_{CC}		±25	mA
Continuous current through V_{CC} or GNI)		±50	mA
Junction temperature, T _J			150	°C
Storage temperature, T _{stg}		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings: SN74HC138

			VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾		V	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		2	5	6	V
		$V_{CC} = 2 V$	1.5			
VIH	High-level input voltage	$V_{CC} = 4.5 V$	3.15			V
		$V_{CC} = 6 V$	4.2			
		$V_{CC} = 2 V$			0.5	
VIL	V _{IL} Low-level input voltage	$V_{CC} = 4.5 V$			1.35	V
		$V_{CC} = 6 V$			1.8	
VI	Input voltage		0		V _{CC}	V
Vo	Output voltage		0		V_{CC}	V
		$V_{CC} = 2 V$			1000	
$\Delta t / \Delta v$	Input transition rise or fall time	$V_{CC} = 4.5 V$			500	ns
		V _{CC} = 6 V			400	
C _{pd}	Power dissipation capacitance (no load)			85		pF
	Operating free air temperature	SN54HC138	-55		125	°C
T _A	Operating free-air temperature	SN74HC138	-40		85	°C

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See TI application report, *Implications of Slow or Floating CMOS Inputs* (SCBA004).

6.4 Thermal Information: SN74HC138

		SN74HC138					
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DB (SSOP)	N (PDIP)	NS (SO)	PW (TSSOP)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	87.3	104.3	54.8	91.1	114.6	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	45.8	54.7	42.1	49.5	49.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	44.8	54.9	34.8	51.5	59.6	°C/W
ΨJT	Junction-to-top characterization parameter	14.2	17.7	27	17.8	6.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	44.5	54.4	34.7	51.2	59.1	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Thermal Information: SN54HC138

THERMAL METRIC ⁽¹⁾					
		J (CDIP)	W (CFP)	FK (LCCC)	UNIT
		16 PINS	16 PINS	20 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	—	_	—	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	45.4	68.1	49	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	—	118.4	47.7	°C/W
ΨJT	Junction-to-top characterization parameter	—	—	7.2	°C/W
ΨJB	Junction-to-board characterization parameter	62.5	_	—	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	17.7	9	—	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

(2) $\dot{R_{\theta JC}}$ follows MIL-STD-883, and $R_{\theta JB}$ follows JESD51.

6.6 Electrical Characteristics

$T_A = 25^{\circ}C$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
			$V_{CC} = 2 V$	1.9	1.998		
		I _{OH} = -20 μA	$V_{CC} = 4.5 V$	4.4	4.499		
V _{OH}	$V_I = V_{IH} \text{ or } V_{IL}$		$V_{CC} = 6 V$	5.9	5.999		V
		$I_{OH} = -4 \text{ mA}, V_{CC} = 4$.5 V	3.98	4.3		
		I_{OH} = -5.2 mA, V_{CC} =	I _{OH} = -5.2 mA, V _{CC} = 6 V		5.8		
	V _I = V _{IH} or V _{IL}	I _{OL} = 20 μΑ	$V_{CC} = 2 V$		0.002	0.1	
			$V_{CC} = 4.5 V$		0.001	0.1	V
V _{OL}			$V_{CC} = 6 V$		0.001	0.1	
		I _{OL} = 4 mA, V _{CC} = 4.5	$I_{OL} = 4 \text{ mA}, V_{CC} = 4.5 \text{ V}$		0.17	0.26	
		$I_{OL} = 5.2 \text{ mA}, V_{CC} = 6$	I _{OL} = 5.2 mA, V _{CC} = 6 V		0.15	0.26	
lj –	$V_{I} = V_{CC}$ or 0, $V_{CC} =$	= 6 V			±0.1	±100	nA
I _{CC}	$V_{I} = V_{CC} \text{ or } 0, I_{O} = 0$	$V_{I} = V_{CC}$ or 0, $I_{O} = 0$, $V_{CC} = 6$ V				8	μΑ
Ci	$V_{CC} = 2 V \text{ to } 6 V$				3	10	pF

SCLS107F-DECEMBER 1982-REVISED SEPTEMBER 2016

www.ti.com

STRUMENTS

EXAS

6.7 Electrical Characteristics: SN74HC138

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
		$V_{CC} = 2 V$	1.9				
		I _{OH} = −20 μA	V _{CC} = 4.5 V	4.4			
V _{OH}	$V_{I} = V_{IH} \text{ or } V_{IL}$		$V_{CC} = 6 V$	5.9			V
		$I_{OH} = -4 \text{ mA}, V_{CC} = 4$	1.5 V	3.84			
		I_{OH} = -5.2 mA, V _{CC} =	6 V	5.34			
	$V_{I}=V_{IH}$ or V_{IL}	I _{OL} = 20 μA	$V_{CC} = 2 V$			0.1	V
			V _{CC} = 4.5 V			0.1	
V _{OL}			V _{CC} = 6 V			0.1	
		$I_{OL} = 4 \text{ mA}, V_{CC} = 4.8$	5 V			0.33	
		$I_{OL} = 5.2 \text{ mA}, V_{CC} = 0$	I _{OL} = 5.2 mA, V _{CC} = 6 V			0.33	
l _l	$V_{I} = V_{CC} \text{ or } 0, V_{CC} =$	= 6 V				±1000	nA
I _{CC}	$V_{I} = V_{CC} \text{ or } 0, I_{O} = 0$), V _{CC} = 6 V				80	μA
C _i	$V_{CC} = 2 V \text{ to } 6 V$					10	pF

6.8 Electrical Characteristics: SN54HC138

over operating	free-air	temperature	range	(unless	otherwise noted)

PARAMETER	TES	ST CONDITIONS	V _{cc}	MIN	ТҮР	MAX	UNIT
			$V_{CC} = 2 V$	1.9			
		I _{OH} = −20 μA	$V_{CC} = 4.5 V$	4.4			
V _{OH}	$V_{I} = V_{IH} \text{ or } V_{IL}$		$V_{CC} = 6 V$	5.9			V
		$I_{OH} = -4 \text{ mA}, V_{CC} = -4 \text{ mA}$	4.5 V	3.7			
		I _{OH} = –5.2 mA, V _{CC} =	= 6 V	5.2			
			$V_{CC} = 2 V$			0.1	
		I _{OL} = 20 μA	$V_{CC} = 4.5 V$			0.1	
V _{OL}	$V_{I} = V_{IH} \text{ or } V_{IL}$		$V_{CC} = 6 V$			0.1	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = 4.$.5 V			0.4	
		I_{OL} = 5.2 mA, V_{CC} =	6 V			0.4	
I _I	$V_{I} = V_{CC}$ or 0, $V_{CC} =$	= 6 V				±1000	nA
I _{CC}	$V_{I} = V_{CC} \text{ or } 0, I_{O} = 0$, V _{CC} = 6 V				160	μA
Ci	$V_{CC} = 2 V \text{ to } 6 V$					10	pF

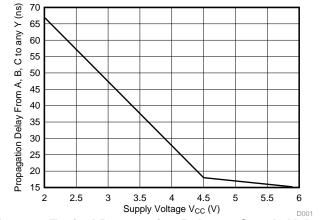
6.9 Switching Characteristics

 $T_A = 25^{\circ}C$ and $C_L = 50 \text{ pF}$ (unless otherwise noted; see *Parameter Measurement Information*)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
		$V_{CC} = 2 V$		67	180	
	From A, B, or C (input) to any Y (output)	$V_{CC} = 4.5 V$		18	36	
		$V_{CC} = 6 V$		15	31	20
t _{pd}		$V_{CC} = 2 V$		66	155	ns
	From enable (input) to any Y (output)	$V_{CC} = 4.5 V$		18	31	
		$V_{CC} = 6 V$		15	26	
		$V_{CC} = 2 V$		38	75	
tt	To any output	$V_{CC} = 4.5 V$		8	15	ns
		$V_{CC} = 6 V$		6	13	

6.10 Switching Characteristics: SN74HC138

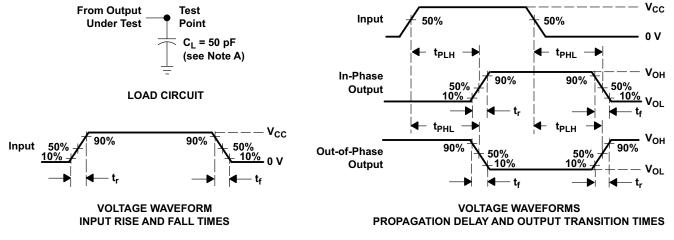
over recommended operating free-air temperature range and $C_L = 50 \text{ pF}$ (unless otherwise noted; see *Parameter Measurement Information*)


PARAMETER	TEST CONDITIONS		MIN	ТҮР	MAX	UNIT
		$V_{CC} = 2 V$			225	
	From A, B, or C (input) to any Y (output)	$V_{CC} = 4.5 V$			45	
		$V_{CC} = 6 V$			38	~~
t _{pd}		$V_{CC} = 2 V$			195	ns
	From enable (input) to any Y (output)	$V_{CC} = 4.5 V$			39	
		$V_{CC} = 6 V$			33	
		$V_{CC} = 2 V$			95	
t _t	To any output	$V_{CC} = 4.5 V$		19		
		$V_{CC} = 6 V$			16	

6.11 Switching Characteristics: SN54HC138

over recommended operating free-air temperature range and $C_L = 50 \text{ pF}$ (unless otherwise noted; see *Parameter Measurement Information*)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
		$V_{CC} = 2 V$			270	
	From A, B, or C (input) to any Y (output)	$V_{CC} = 4.5 V$			54	
		$V_{CC} = 6 V$			46	20
t _{pd}		$V_{CC} = 2 V$			235	ns
	From enable (input) to any Y (output)	$V_{CC} = 4.5 V$			47	
		$V_{CC} = 6 V$			40	
		$V_{CC} = 2 V$			110	
t _t	To any output	$V_{CC} = 4.5 V$			22	ns
		$V_{CC} = 6 V$			19	

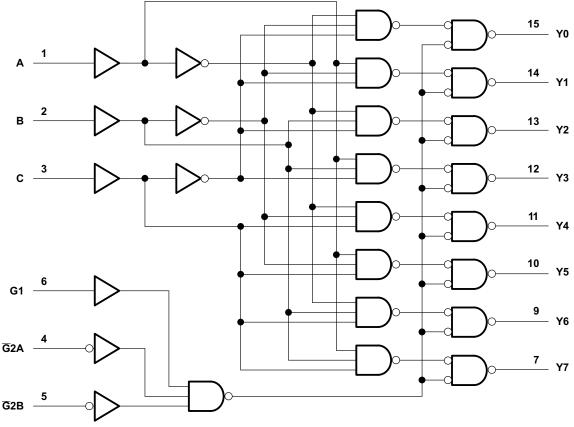

6.12 Typical Characteristic

7 Parameter Measurement Information

- NOTES: A. C_L includes probe and test-fixture capacitance.
 - B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z_O = 50 Ω, t_r = 6 ns, t_f = 6 ns.
 - C. The outputs are measured one at a time with one input transition per measurement.
 - D. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms

8



8 Detailed Description

8.1 Overview

The SNx4HC138 devices are 3-to-8 decoders and demultiplexers. The three input pins, A, B, and C, select which output is active. The selected output is pulled LOW, while the remaining outputs are all HIGH. The conditions at the binary-select inputs at the three enable inputs select one of eight output lines. Two active-low and one active-high enable inputs reduce the requirement for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

Pin numbers shown are for the D, DB, J, N, NS, PW, and W packages.

Figure 3. Logic Diagram (Positive Logic)

8.3 Feature Description

This device features three binary inputs to select a single active-low output. Three enable pins are also available to enable or disable the outputs. One active high enable and two active low enable pins are available, and any enable pin can be deactivated to force all outputs high. All three enable pins must be active for the output to be enabled.

SN54HC138, SN74HC138

SCLS107F-DECEMBER 1982-REVISED SEPTEMBER 2016

TEXAS INSTRUMENTS

www.ti.com

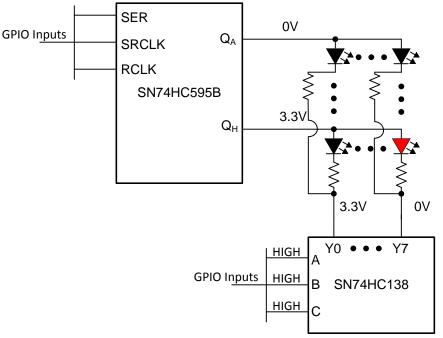
8.4 Device Functional Modes

Table 1 lists the functions of the SNx4HC138 devices.

		INP	UTS										
I	ENABLI	E	ļ	SELECT	Г				001	PUTS			
G1	G2A	G2B	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Х	Н	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
н	L	L	L	L	L	L	н	н	Н	н	н	н	Н
н	L	L	L	L	н	Н	L	н	Н	н	н	н	Н
н	L	L	L	н	L	Н	н	L	Н	н	н	н	Н
н	L	L	L	н	н	Н	н	н	L	н	н	н	Н
н	L	L	н	L	L	Н	н	н	Н	L	н	н	Н
н	L	L	н	L	н	Н	н	н	Н	н	L	н	Н
н	L	L	н	н	L	Н	н	н	н	н	н	L	Н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Table 1. Function Table

9 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74HC138 is useful as a scanning column selector for an LED Matrix display as it can be used for the low side drive of the LED string. The decoder functionality ensures that no more than one output is pulled to a low-level logic voltage so that only a single column is enabled at any point in time.

9.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

Figure 4. LED Matrix Driver Application

9.2.1 Design Requirements

These devices use CMOS technology and have balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive also creates fast edges into light loads, so routing and load conditions must be considered to prevent ringing.

9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - For switch time specifications, see propagation delay times in Switching Characteristics.
 - For input voltage level specifications for control inputs, see V_{IH} and V_{IL} in *Electrical Characteristics*.
- 2. Recommended Output Conditions
 - Outputs must not be pulled above V_{CC} or below GND.

Copyright © 1982-2016, Texas Instruments Incorporated

FXAS NSTRUMENTS

www.ti.com

Typical Application (continued)

9.2.3 Application Curve

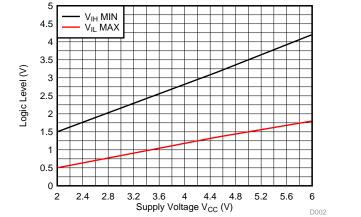


Figure 5. Input High and Input Low Thresholds vs Supply Voltage

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Recommended Operating Conditions.

Each V_{CC} terminal must have a good bypass capacitor to prevent power disturbance. A 0.1-µF bypass capacitor is recommended to be placed close to the V_{CC} terminal. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise; 0.1-µF and 1-µF capacitors are commonly used in parallel. The bypass capacitor must be installed as close to the power terminal as possible for best results.

11 Layout

11.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This upsets the transmission line characteristics, especially the distributed capacitance and self-inductance of the trace (resulting in the reflection). It is a given that not all PCB traces can be straight, and so they have to turn corners. Figure 6 shows progressively better techniques of rounding corners. Only the last example maintains constant trace width and minimizes reflections.

11.2 Layout Example

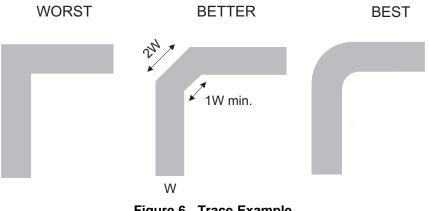


Figure 6. Trace Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

Implications of Slow or Floating CMOS Inputs (SCBA004)

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54HC138	Click here	Click here	Click here	Click here	Click here
SN74HC138	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 1982–2016, Texas Instruments Incorporated

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-8406201VEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8406201VE A SNV54HC138J	Samples
5962-8406201VFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8406201VF A SNV54HC138W	Samples
84062012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	84062012A SNJ54HC 138FK	Samples
8406201EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8406201EA SNJ54HC138J	Samples
8406201FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8406201FA SNJ54HC138W	Samples
JM38510/65802B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 65802B2A	Samples
JM38510/65802BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 65802BEA	Samples
M38510/65802B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 65802B2A	Samples
M38510/65802BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 65802BEA	Samples
SN54HC138J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54HC138J	Samples
SN74HC138D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138DBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples

PACKAGE OPTION ADDENDUM

17-Mar-2017

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74HC138DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138DT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU CU SN	N / A for Pkg Type	-40 to 85	SN74HC138N	Samples
SN74HC138NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC138N	Samples
SN74HC138NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138PWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138PWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SN74HC138PWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC138	Samples
SNJ54HC138FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	84062012A SNJ54HC 138FK	Samples
SNJ54HC138J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8406201EA SNJ54HC138J	Samples
SNJ54HC138W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	8406201FA SNJ54HC138W	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

17-Mar-2017

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54HC138, SN54HC138-SP, SN74HC138 :

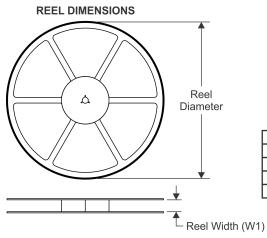
• Catalog: SN74HC138, SN54HC138

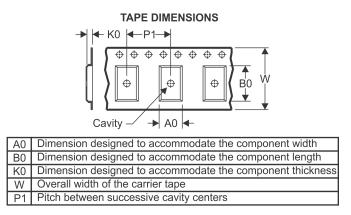
Automotive: SN74HC138-Q1, SN74HC138-Q1

- Military: SN54HC138
- Space: SN54HC138-SP

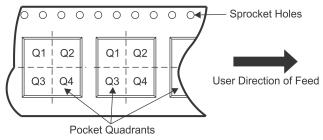
NOTE: Qualified Version Definitions:

17-Mar-2017


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

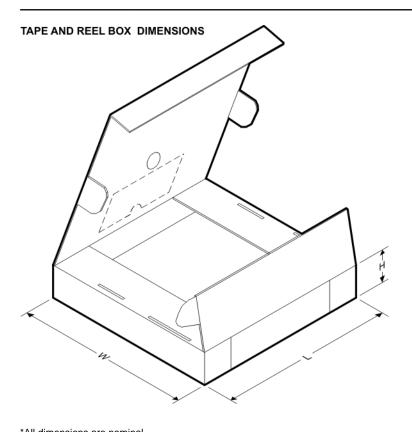

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

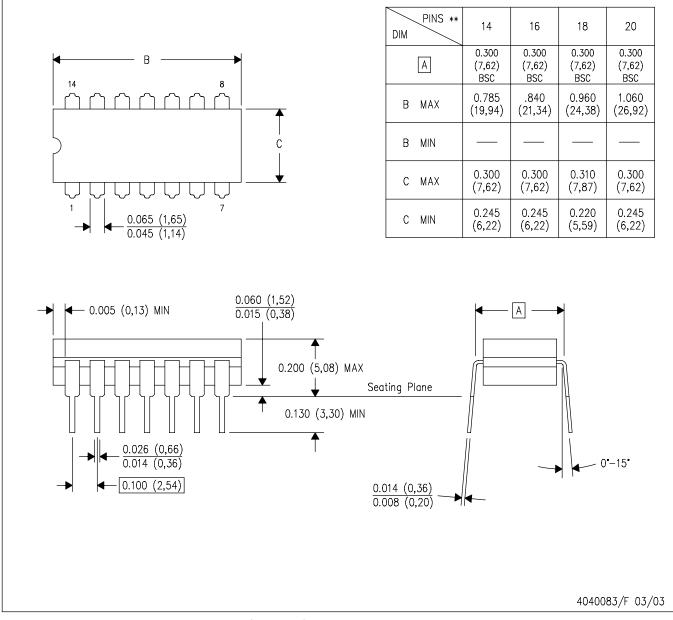
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC138DBR	SSOP	DB	16	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
SN74HC138DR	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC138DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC138DRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC138PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC138PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC138PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC138PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

Texas Instruments

www.ti.com

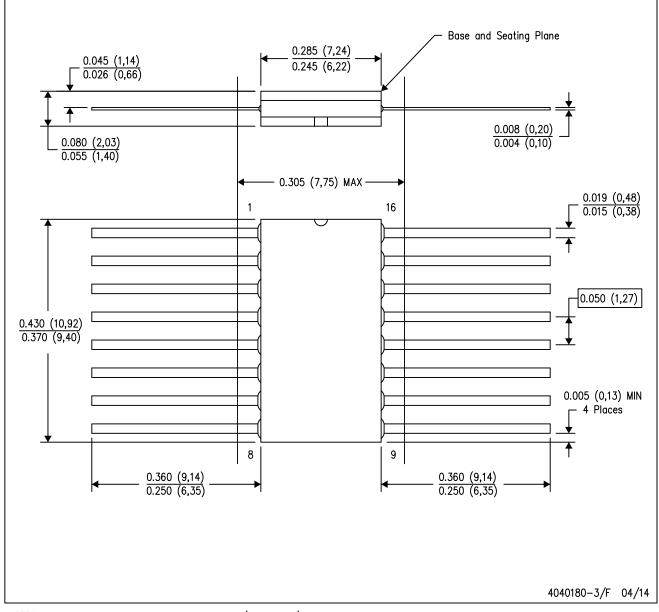
PACKAGE MATERIALS INFORMATION


2-Feb-2017

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC138DBR	SSOP	DB	16	2000	367.0	367.0	38.0
SN74HC138DR	SOIC	D	16	2500	364.0	364.0	27.0
SN74HC138DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74HC138DRG4	SOIC	D	16	2500	333.2	345.9	28.6
SN74HC138PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
SN74HC138PWR	TSSOP	PW	16	2000	364.0	364.0	27.0
SN74HC138PWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0
SN74HC138PWT	TSSOP	PW	16	250	367.0	367.0	35.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

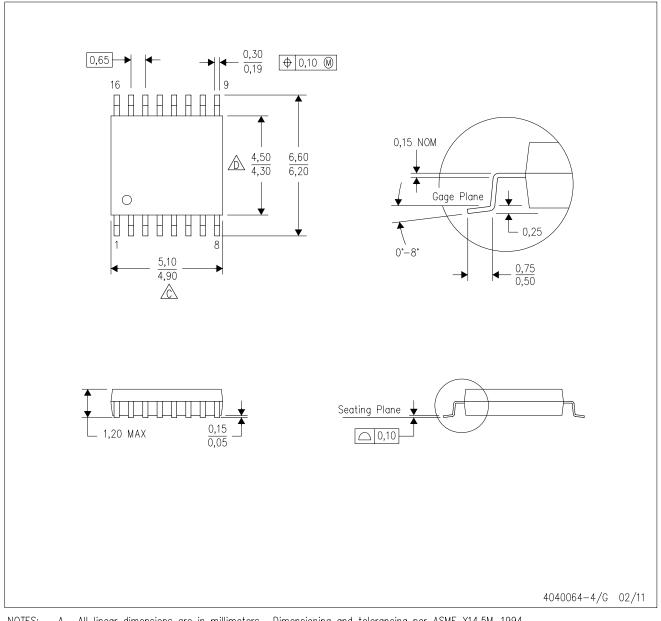


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

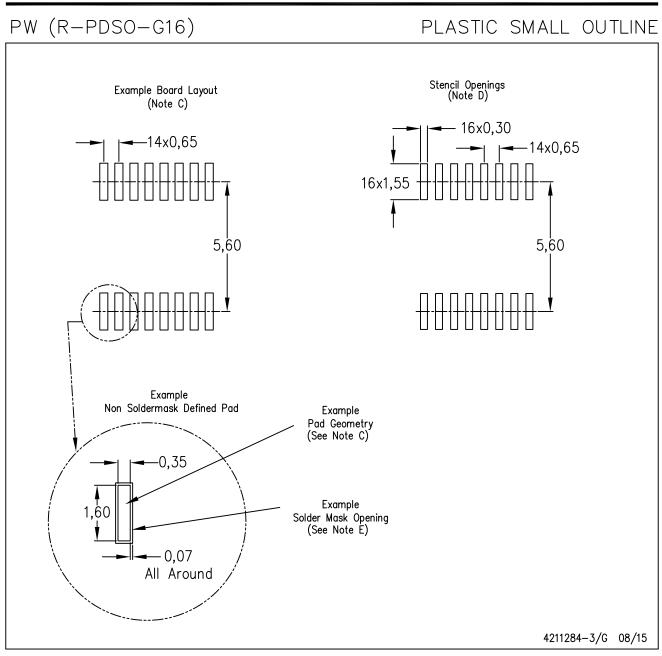


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP2-F16

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:


A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

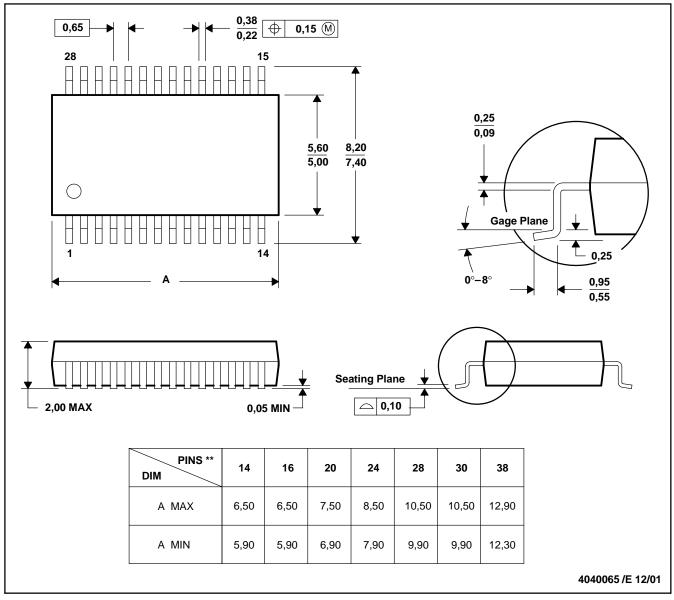
Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


MECHANICAL DATA

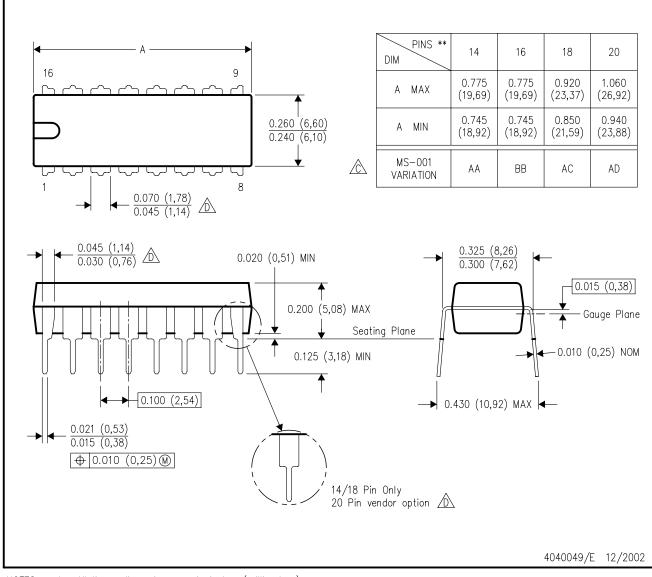
MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

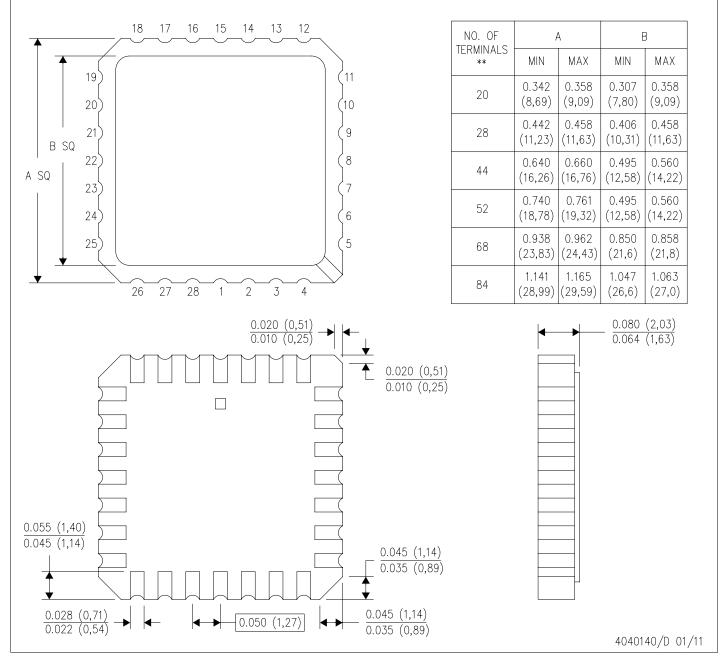
NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a metal lid.

D. Falls within JEDEC MS-004

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated