

SNVS061G-MONTH 2003-REVISED JULY 2013

LMS1585A 5A/LMS1587 5A and 3A Low Dropout Fast Response Regulators

Check for Samples: LMS1585A , LMS1587

FEATURES

- Fast Transient Response
- Available in Adjustable, 1.5V, and 3.3V versions
- **Current Limiting and Thermal Protection**
- Commercial Temp. Tange: 0°C to 125°C
- Industrial Temp. Range: -40°C to 125°C
- Line Regulation 0.005% (typical)
- Load Regulation 0.05% (typical)
- Direct Replacement for LT[®] 1585A/87

APPLICATIONS

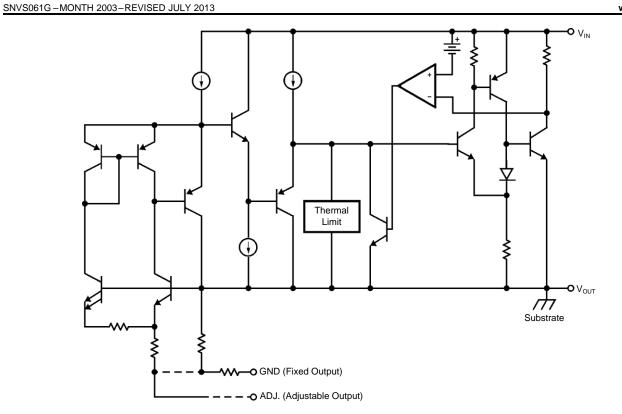
- Pentium[®] processor supplies
- **PowerPC[®] supplies**
- Other microprocessor supplies
- Low voltage logic supplies


DESCRIPTION

The LMS1585A and LMS1587 are low dropout positive regulators with output load current of 5A and 3A respectively. Their low dropout voltage (1.2V) and fast transient response make them an excellent solution for low voltage microprocessor applications.

The LMS1585A/87 are available in adjustable versions, which can set the output voltage with only two external resistors. In addition, they are also available in 1.5V and 3.3V fixed voltage versions⁽¹⁾.

The LMS1585A/87 circuits include a zener trimmed bandgap reference, current limiting and thermal shutdown. The LMS1585A/87 series are available in KTT (TO-263) and NDE (TO-220) packages.


⁽¹⁾ Consult factory for other fixed voltage options.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of **5**3 Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPC is a registered trademark of IBM. Pentium is a registered trademark of Intel Corporation. LT is a registered trademark of Linear Technology.

Table 1. LMS1585A/LMS1587 Device Options

Part Number	Output Voltage	Operating Temperature	Package Drawing	Package Type	Output Current
LMS1585AIS-1.5	1.5V	40%C to 405%C			
LMS1585AIS-3.3	3.3V	-40°C to 125°C			
LMS1585ACS-ADJ	Adjustable		КТТ	TO-263	5A
LMS1585ACS-1.5	1.5V				
LMS1585ACS-3.3	3.3V	0°C to 125°C			
LMS1585ACT-1.5	1.5V			TO 000	5.0
LMS1585ACT-3.3	3.3V		NDE	TO-220	5A
LMS1587IS-ADJ	Adjustable				
LMS1587IS-1.5	1.5V	-40°C to 125°C			
LMS1587IS-3.3	3.3V			TO-263	
LMS1587CS-ADJ	Adjustable		- KTT		
LMS1587CS-3.3	3.3V	0°C to 125°C			3A
LMS1587CS-1.5	1.5V				
LMS1587IT-1.5	1.5V	-40°C to 125C			
LMS1587CT-ADJ	Adjustable	0%0 to 405%0	NDE	TO-220	
LMS1587CT-3.3	3.3V	0°C to 125°C			

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

SNVS061G-MONTH 2003-REVISED JULY 2013

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾

Maximum Input to Output Voltage (VIN to GND)	13V
Power Dissipation ⁽³⁾	Internally Limited
Junction Temperature (T _J) ⁽³⁾	150°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature	260°C, 10 sec
ESD Tolerance ⁽⁴⁾	2000V

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics.

(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.
 (3) The maximum power dissipation is a function of T_{J(max)}, θ_{JA}, and T_A. The maximum allowable power dissipation at any ambient temperature is P_D = (T_{J(max)}-T_A)/θ_{JA}. All numbers apply for packages soldered directly into a PC board.
 (4) For testing purposes, ESD was applied using human body model, 1.5 kΩ in series with 100 pF.

Copyright © 2003-2013, Texas Instruments Incorporated

SNVS061G-MONTH 2003-REVISED JULY 2013

ELECTRICAL CHARACTERISTICS

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, 0°C to 125°C for commercial grade and -40°C to 125°C for industrial grade.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
V _{REF}	Reference Voltage	$ \begin{array}{l} LMS1585A-ADJ \\ V_{IN}-V_{OUT}=3V, \ I_{OUT}=10mA \\ 10mA \leq I_{OUT} \leq 5A, \ 1.5V \leq V_{IN}-V_{OUT} \leq 5.75V \end{array} $	1.238 1.225	1.250 1.250	1.262 1.275	V V
		LMS1587-ADJ 10mA \leq I _{OUT} \leq 3A, 1.5V \leq V _{IN} -V _{OUT} \leq 5.75V	1.225	1.250	1.275	V
V _{OUT}	Output Voltage	$ \begin{array}{l} LMS1585A-1.5\\ I_{OUT}=0mA,\ V_{IN}=5V\\ 0\leq I_{OUT}\leq 5A,\ 3V\leq V_{IN}\leq 7V \end{array} $	1.485 1.470	1.500	1.515 1.530	V V
		LMS1585A-3.3 I _{OUT} = 0mA, V _{IN} = 5V $0 \le I_{OUT} \le 5A$, 4.75V $\le V_{IN} \le 7V$	3.267 3.235	3.300 3.300	3.333 3.365	V V
		LMS1587-1.5 V $_{\rm IN}$ = 5V, I $_{\rm OUT}$ = 0mA, TJ = 25°C 0≤ I $_{\rm OUT}$ ≤ 3A, 3V ≤ V $_{\rm IN}$ ≤ 7V	1.485 1.470	1.500 1.500	1.515 1.530	V V
		LMS1587-3.3 0 \leq I _{OUT} \leq 3A, 4.75V \leq V _{IN} \leq 7V	3.235	3.300	3.365	V
ΔV_{OUT}	Line Regulation ⁽³⁾	LMS1585A/87-ADJ I _{OUT} = 10mA, 2.75V ≤ V _{IN} ≤ 7V		0.005	0.2	%
		LMS1585A/87-3.3 I _{OUT} = 0mA, 4.75V ≤ V _{IN} ≤ 7V		0.005	0.2	%
		LMS1585A/87-1.5 I _{OUT} = 0mA, 3V ≤ V _{IN} ≤ 7V		0.005	0.2	%
ΔV _{OUT}	Load Regulation ⁽³⁾	LMS1585A-ADJ $V_{IN}-V_{OUT} = 3V$, 10mA $\leq I_{OUT} \leq 5A$		0.05	0.3 0.5	%
		LMS1585A-1.5/LMS1585A-3.3 V _{IN} = 5V, 0 ≤ I _{OUT} ≤ 5A		0.05 0.05	0.3 0.5	%
		LMS1587-ADJ $V_{IN}-V_{OUT} = 3V$, 10mA \leq IOUT \leq 3A		0.05 0.05	0.3 0.5	%
		LMS1587-1.5/LMS1587-3.3 V _{IN} = 5V, 0 ≤ I _{OUT} ≤ 3A		0.05 0.05	0.3 0.5	% %
V _{IN} -V _{OUT}	Dropout Voltage	LMS1585A-ADJ/LMS1587-ADJ ΔV _{REF} = 1%, I _{OUT} = 3A		1.15	1.3	V
		LMS1585A-3.3/LMS1587-3.3/ LMS1585A-1.5/LMS1587-1.5 ΔV _{OUT} = 1%, I _{OUT} = 3A		1.15	1.3	V
		LMS1585A-ADJ ∆V _{REF} = 1%, I _{OUT} = 5A		1.2	1.4	V
		LMS1585A-1.5/LMS1585A-3.3 ΔV _{OUT} = 1%, I _{OUT} = 5A		1.2	1.4	V

All limits are specified by testing or statistical analysis. (1)

(2) (3) Typical Values represent the most likely parametric norm.

Load and line regulation are measured at constant junction temperature, and are ensured up to the maximum power dissipation of 30W. Power dissipation is determined by the input/output differential and the output current. Ensured maximum power dissipation will not be available over the full input/output range.

Copyright © 2003–2013, Texas Instruments Incorporated

SNVS061G-MONTH 2003-REVISED JULY 2013

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

Typicals and limits appearing in normal type apply for $T_J = 25^{\circ}C$. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, 0°C to 125°C for commercial grade and -40°C to 125°C for industrial grade.

I _{LIMIT}	Current Limit	LMS1585A-ADJ/LMS1585A-3.3/LMS1585A-1.5 V _{IN} -V _{OUT} = 5.5V	5.0	6.6		А
		LMS1587-ADJ/LMS1587-3.3/LMS1587-1.5 V _{IN} -V _{OUT} = 5.5V	3.1	4.3		A
	Minimum Load Current ⁽⁴⁾	LMS1585A/87-ADJ 1.5V ≤ V _{IN} −V _{OUT} ≤ 5.75V		2.0	10.0	mA
	Quiescent Current	LMS1585A-3.3/LMS1587-3.3/ LMS1585A-1.5/LMS1587-1.5 V _{IN} = 5V		7.0	13.0	mA
	Thermal Regulation	TA = 25°C, 30ms Pulse		0.003		%/W
	Ripple Rejection	LMS1585A-ADJ $f_{RIPPLE} = 120Hz, V_{IN}-V_{OUT} = 3V,$ $I_{OUT} = 5A, C_{OUT} = 25\mu F Tantalum$		72		dB
		$\label{eq:LMS1585A-1.5} \begin{split} LMS1585A-1.5 \\ f_{RIPPLE} &= 120Hz, \ C_{OUT} = 25\mu F \\ Tantalum, \ I_{OUT} &= 5A, \ V_{IN} = 4.5V \end{split}$	60	72		dB
		LMS1585A-3.3 f _{RIPPLE} = 120Hz, C _{OUT} = 25 μ F Tantalum, I _{OUT} = 5A, V _{IN} = 6.3V		72		dB
		LMS1587-ADJ f _{RIPPLE} = 120 Hz, V _{IN} -V _{OUT} = 3V, I _{OUT} = 3A C _{OUT} = 25 μ F Tantalum		72		dB
		LMS1587-1.5 $f_{RIPPLE} = 120$ Hz, $C_{OUT} = 25\mu$ F Tantalum, $I_{OUT} = 3A$, $V_{IN} = 4.5V$	60	72		dB
		LMS1587-3.3 f _{RIPPLE} = 120 Hz, C _{OUT} = 25 μ F Tantalum, I _{OUT} = 3A, V _{IN} = 6.3V		72		dB
	Adjust Pin Current			55	120	μA
	Adjust Pin Current	$10mA \le I_{OUT} \le I_{FULLLOAD},$ $1.5V \le V_{IN}-V_{OUT} \le 5.75V^{(5)}$		0.2		μA
	Temperature Stability			0.5		%
	Long Term Stability	TA = 125°C, 1000Hrs		0.03		%
	RMS Output Noise (% of V _{OUT})	10Hz ≤ f ≤ 10kHz		0.003		%
	Thermal Resistance Junction-to-Case	3-Lead KTT (TO-263): Control/Output Section 3-Lead NDE (TO-220): Control/Output Section			0.65/2.7 0.65/2.7	*C/W *C/W

(4) The minimum output current required to maintain regulation.
(5) I_{FULLLOAD} is 5A for LMS1585A and 3A for LMS1587.

APPLICATION NOTE

OUTPUT VOLTAGE

The adjustable version develops at 1.25V reference voltage, (VREF), between the output and the adjust terminal. As shown in Figure 3, this voltage is applied across resistor R1 to generate a constant current I1. This constant current then flows through R2. The resulting voltage drop across R2 adds to the reference voltage to sets the desired output voltage.

The current I_{ADJ} from the adjustment terminal introduces an output error. But since it is small (120µA max), it becomes negligible when R1 is in the 100 Ω range.

For fixed voltage devices, R1 and R2 are integrated inside the devices.

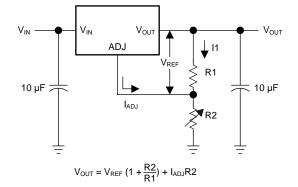


Figure 3. Basic Adjustable Regulator

Copyright © 2003–2013, Texas Instruments Incorporated

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LMS1585ACS-1.5	NRND	DDPAK/ TO-263	KTT	3	45	TBD	Call TI	Call TI	0 to 125	LMS1585 ACS-1.5	
LMS1585ACS-1.5/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LMS1585 ACS-1.5	Samples
LMS1585ACS-3.3	NRND	DDPAK/ TO-263	КТТ	3	45	TBD	Call TI	Call TI	0 to 125	LMS1585 ACS-3.3	
LMS1585ACS-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	45 Pb-Free (RoHS CU SN Level-3-245C-168 HR 0 to 125 Exempt) 0 to 125		0 to 125	LMS1585 ACS-3.3	Samples	
LMS1585ACSX-1.5/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LMS1585 ACS-1.5	Samples
LMS1585ACSX-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LMS1585 ACS-3.3	Samples
LMS1585ACSX-ADJ/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LMS1585 ACS-ADJ	Samples
LMS1585ACT-1.5	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	0 to 125	LMS1585ACT 1.5	
LMS1585ACT-1.5/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 125	LMS1585ACT 1.5	Samples
LMS1585ACT-3.3/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 125	LMS1585 ACT-3.3	Samples
LMS1585AIS-1.5	NRND	DDPAK/ TO-263	КТТ	3	45	TBD	Call TI	Call TI	-40 to 125	LMS1585 AIS-1.5	
LMS1585AIS-1.5/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	-40 to 125	LMS1585 AIS-1.5	Samples
LMS1585AIS-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	-40 to 125	LMS1585 AIS-3.3	Samples
LMS1585AISX-3.3/NO	ACTIVE	DDPAK/ TO-263	КТТ	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	-40 to 125	LMS1585 AIS-3.3	Samples
LMS1587CS-1.5/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LMS1587 CS-1.5	Samples
LMS1587CS-3.3	NRND	DDPAK/ TO-263	КТТ	3	45	TBD	Call TI	Call TI	0 to 125	LMS1587 CS-3.3	
LMS1587CS-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LMS1587 CS-3.3	Samples

PACKAGE OPTION ADDENDUM

17-Mar-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LMS1587CS-ADJ	NRND	DDPAK/ TO-263	ктт	3	45	TBD	Call TI	Call TI	0 to 125	LMS1587 CS-ADJ	
LMS1587CS-ADJ/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LMS1587 CS-ADJ	Samples
LMS1587CSX-1.5/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	3 500 Pb-Free (RoHS CU SN Level-3-245C-168 HR 0 to 125 Exempt)		0 to 125	LMS1587 CS-1.5	Sample		
LMS1587CSX-3.3			0 to 125	LMS1587 CS-3.3							
LMS1587CSX-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LMS1587 CS-3.3	Sample
LMS1587CSX-ADJ/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	0 to 125	LMS1587 CS-ADJ	Sample
LMS1587CT-3.3	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	0 to 125	LMS1587 CT-3.3	
LMS1587CT-3.3/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 125	LMS1587 CT-3.3	Sample
LMS1587CT-ADJ	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	0 to 125	LMS1587 CT-ADJ	
LMS1587CT-ADJ/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	0 to 125	LMS1587 CT-ADJ	Sample
LMS1587IS-1.5	NRND	DDPAK/ TO-263	КТТ	3	45	TBD	Call TI	Call TI	-40 to 125	LMS1587 IS-1.5	
LMS1587IS-1.5/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	-40 to 125	LMS1587 IS-1.5	Sample
LMS1587IS-3.3	NRND	DDPAK/ TO-263	КТТ	3	45	TBD	Call TI	Call TI	-40 to 125	LMS1587 IS-3.3	
LMS1587IS-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	-40 to 125	LMS1587 IS-3.3	Sample
LMS1587IS-ADJ	NRND	DDPAK/ TO-263	КТТ	3	45	TBD	Call TI	Call TI -40 to 125		LMS1587 IS-ADJ	
LMS1587IS-ADJ/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR -40 to 125 LMS1587 IS-ADJ			Sample
LMS1587ISX-3.3/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	-40 to 125	LMS1587 IS-3.3	Sample
LMS1587ISX-ADJ	NRND	DDPAK/ TO-263	КТТ	3	500	TBD	Call TI	Call TI	-40 to 125	LMS1587 IS-ADJ	

17-Mar-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LMS1587ISX-ADJ/NOPB	ACTIVE	DDPAK/ TO-263	КТТ	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	-40 to 125	LMS1587 IS-ADJ	Samples
LMS1587IT-1.5/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	-40 to 125	LMS1587 IT-1.5	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

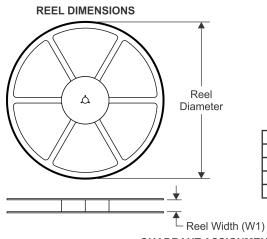
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

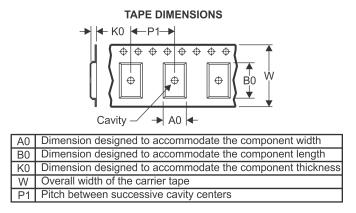
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

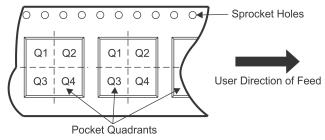
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM


17-Mar-2017

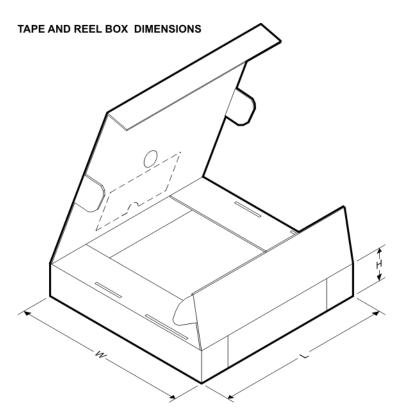

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

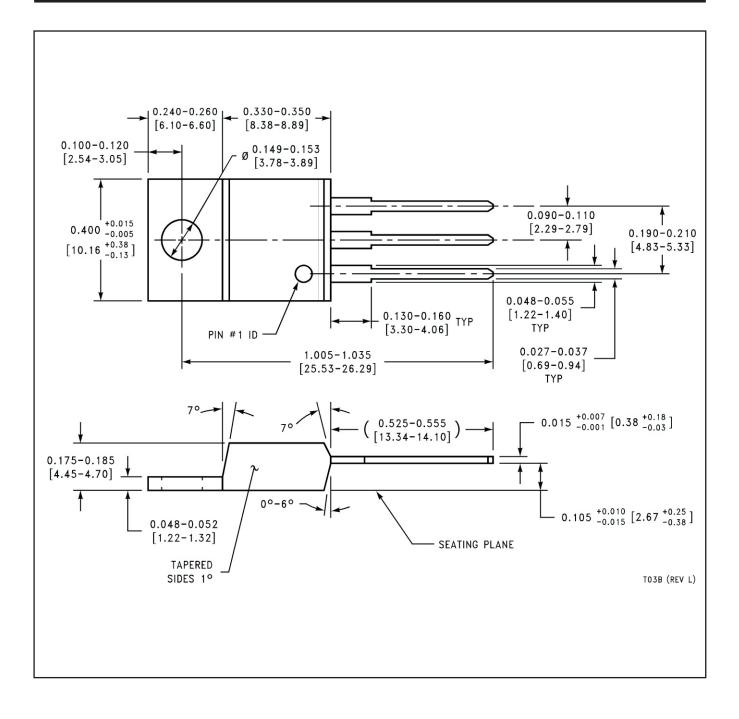
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMS1585ACSX-1.5/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1585ACSX-3.3/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
MS1585ACSX-ADJ/NOP B	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1585AISX-3.3/NO	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1587CSX-1.5/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1587CSX-3.3	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1587CSX-3.3/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1587CSX-ADJ/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1587ISX-3.3/NOPB	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1587ISX-ADJ	DDPAK/ TO-263	КТТ	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LMS1587ISX-ADJ/NOPB	DDPAK/	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2

8-Mar-2017

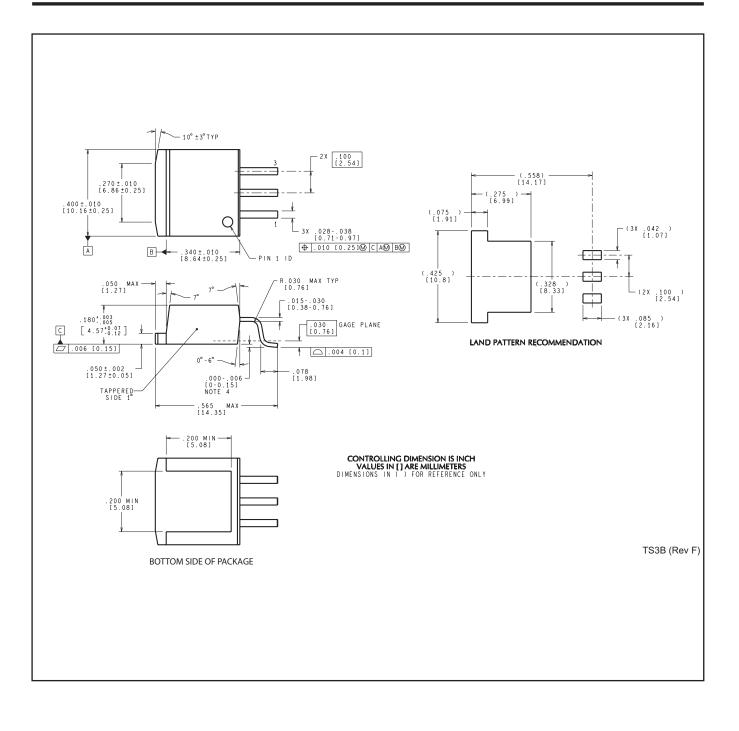
Device	Package Type	Package Drawing	Pins	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TO-263										



*All	dimensions	are	nominal
All	unnensions	are	nonna

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMS1585ACSX-1.5/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1585ACSX-3.3/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1585ACSX-ADJ/NOP B	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1585AISX-3.3/NO	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1587CSX-1.5/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1587CSX-3.3	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1587CSX-3.3/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1587CSX-ADJ/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1587ISX-3.3/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1587ISX-ADJ	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0
LMS1587ISX-ADJ/NOPB	DDPAK/TO-263	КТТ	3	500	367.0	367.0	45.0

MECHANICAL DATA


NDE0003B

MECHANICAL DATA

KTT0003B

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated