

SN55LVDS32, SN65LVDS32, SN65LVDS3486, SN65LVDS9637

SLLS262R - JULY 1997-REVISED DECEMBER 2014

SNx5LVDS3xxxx High-Speed Differential Line Receivers

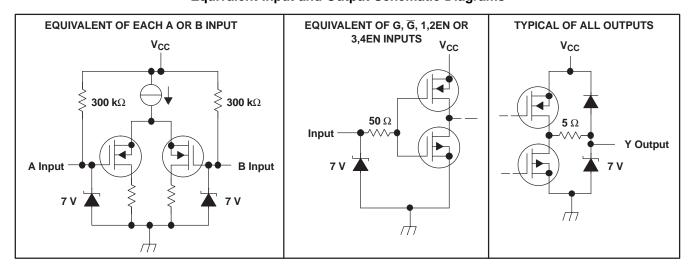
Features

- Meet or Exceed the Requirements of ANSI TIA/EIA-644 Standard
- Operate With a Single 3.3-V Supply
- Designed for Signaling Rates of up to 150 Mbps
- Differential Input Thresholds ±100 mV Max
- Typical Propagation Delay Time of 2.1 ns
- Power Dissipation 60 mW Typical Per Receiver at Maximum Data Rate
- Bus-Terminal ESD Protection Exceeds 8 kV
- Low-Voltage TTL (LVTTL) Logic Output Levels
- Pin Compatible With AM26LS32, MC3486, and µA9637
- Open-Circuit Fail-Safe
- Cold Sparing for Space and High-Reliability Applications Requiring Redundancy

Applications

- Wireless Infrastructure
- Telecom Infrastructure
- Printer

3 Description


The SN55LVDS32, SN65LVDS32, SN65LVDS3486, and SN65LVDS9637 devices are differential line receivers that implement the electrical characteristics of low-voltage differential signaling (LVDS). This signaling technique lowers the output voltage levels of 5-V differential standard levels (such as EIA/TIA-422B) to reduce the power, increase the switching speeds, and allow operation with a 3.3-V supply rail. Any of the differential receivers provides a valid logical output state with a ±100-mV differential input voltage within the input common-mode voltage range. The input common-mode voltage range allows 1 V of ground potential difference between two LVDS nodes.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	LCCC (20)	8.89 mm × 8.89 mm
SN55LVDS32	CDIP (16)	19.56 mm × 6.92 mm
	CFP (16)	10.30 mm × 6.73 mm
	SOIC (16)	9.90 mm × 3.91 mm
SN65LVDS32	SOP (16)	10.30 mm × 5.30 mm
	TSSOP (16)	5.50 mm × 4.40 mm
SN65LVDS3486	SOIC (16)	9.90 mm × 3.91 mm
SIN03LVD53460	TSSOP (16)	5.50 mm × 4.40 mm
SN65LVDS9637	SOIC (8)	4.90 mm × 3.91 mm
21402FAD28031	VSSOP (8)	3.00 mm × 3.00 mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Equivalent Input and Output Schematic Diagrams

Table of Contents

1	Features 1		10.1 Overview	1
2	Applications 1		10.2 Functional Block Diagram	18
3	Description 1		10.3 Feature Description	18
4	Revision History2		10.4 Device Functional Modes	17
5	Description (Continued)3	11	Application and Implementation	18
6	Device Options		11.1 Application Information	18
7			11.2 Typical Application	18
-	Pin Configuration and Functions	12	Power Supply Recommendations	23
8	Specifications	13	Layout	23
	8.1 Absolute Maximum Ratings		13.1 Layout Guidelines	
	8.2 ESD Ratings		13.2 Layout Example	
	8.3 Recommended Operating Conditions	14	Device and Documentation Support	2
	8.5 Electrical Characteristics: SN55LVDS32		14.1 Device Support	
	8.6 Electrical Characteristics: SN65LVDSxxxx		14.2 Documentation Support	
	8.7 Switching Characteristics: SN55LVDS32		14.3 Related Links	2
	8.8 Switching Characteristics: SN65LVDSxxxx		14.4 Trademarks	2
	8.9 Typical Characteristics		14.5 Electrostatic Discharge Caution	2
9	Parameter Measurement Information		14.6 Glossary	2
10	Detailed Description	15	Mechanical, Packaging, and Orderable Information	28

4 Revision History

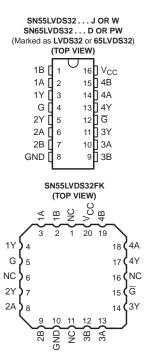
Changes from Revision Q (July 2007) to Revision R

Page

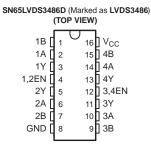
5 Description (Continued)

The intended application of these devices and signaling technique is both point-to-point and multidrop (one driver and multiple receivers) data transmission over controlled impedance media of approximately 100 Ω . The transmission media may be printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer depends on the attenuation characteristics of the media and the noise coupling to the environment.

The SN65LVDS32, SN65LVDS3486, and SN65LVDS9637 devices are characterized for operation from -40°C to 85°C. The SN55LVDS32 device is characterized for operation from -55°C to 125°C.


6 Device Options

Maximum Recommended Operating Speeds


PART NUMBER	ALL Rx ACTIVE
SN65LVDS32	100 Mbps
SN65LVDS3486	100 Mbps
SN65LVDS9637	150 Mbps

7 Pin Configuration and Functions

SN65LVDS9637D (Marked as DK637 or LVDS37) SN65LVDS9637DGN (Marked as L37) SN65LVDS9637DGK (Marked as AXF) (TOP VIEW)

Pin Functions: SNx5LVDS32xx

PIN		1/0	DECORPORA		
NAME	NUMBER	I/O	DESCRIPTION		
V _{CC}	16	-	Supply voltage		
GND	8	-	Ground		
1A	2	I	Differential (LVDS) non-inverting input		
1B	1	I	Differential (LVDS) inverting input		
1Y	3	0	/TTL output signal		
2A	6	I	oifferential (LVDS) non-inverting input		
2B	7	I	Differential (LVDS) inverting input		
2Y	5	0	LVTTL output signal		
ЗА	10	I	Differential (LVDS) non-inverting input		
3B	9	I	Differential (LVDS) inverting input		
3Y	11	0	LVTTL output signal		
4A	14	I	Differential (LVDS) non-inverting input		
4B	15	I	Differential (LVDS) inverting input		
4Y	13	0	LVTTL output signal		
G	4	I	Enable (HI = ENABLE)		
G/	12	I	Enable (LO = ENABLE)		

Pin Functions: SN55LVDS32FK

F	PIN	1/0	DECORPORTION			
NAME	NUMBER	I/O	DESCRIPTION			
V _{CC}	20	-	Supply voltage			
GND	10	-	Ground			
1A	3		Differential (LVDS) non-inverting input			
1B	2	1	fferential (LVDS) inverting input			
1Y	4	0	/TTL output signal			
2A	8	I	fferential (LVDS) non-inverting input			
2B	9	I	Differential (LVDS) inverting input			
2Y	7	0	LVTTL output signal			
ЗА	13	1	Differential (LVDS) non-inverting input			
3B	12	1	Differential (LVDS) inverting input			
3Y	14	0	LVTTL output signal			
4A	18	I	Differential (LVDS) non-inverting input			
4B	19	1	Differential (LVDS) inverting input			
4Y	17	0	LVTTL output signal			
G	5	I	Enable (HI = ENABLE)			
G/	15	I	Enable (LO = ENABLE)			
NC	1, 6, 11, 16	_	No connection			

SLLS262R -JULY 1997-REVISED DECEMBER 2014

Pin Functions: SN65LVDS3486D

F	PIN	1/0	DECODIDATION				
NAME	NUMBER	I/O	DESCRIPTION				
V _{CC}	16	-	Supply voltage				
GND	8	-	Ground				
1A	2	I	Differential (LVDS) non-inverting input				
1B	1	I	ifferential (LVDS) inverting input				
1Y	3	0	LVTTL output signal				
2A	6	I	fferential (LVDS) non-inverting input				
2B	7	I	Differential (LVDS) inverting input				
2Y	5	0	LVTTL output signal				
ЗА	10	I	Differential (LVDS) non-inverting input				
3B	9	I	Differential (LVDS) inverting input				
3Y	11	0	LVTTL output signal				
4A	14	I	Differential (LVDS) non-inverting input				
4B	15	I	Differential (LVDS) inverting input				
4Y	13	0	LVTTL output signal				
1,2EN	4	I	Enable for channels 1 and 2				
3,4EN	12	I	Enable for channels 3 and 4				

Pin Functions: SN65LVDS9637Dxx

P	rin	1/0	DECCRIPTION		
NAME	NUMBER	I/O	DESCRIPTION		
V _{CC}	1	-	Supply voltage		
GND	4	_	Ground		
1A	8	1	fferential (LVDS) non-inverting input		
1B	7	1	fferential (LVDS) inverting input		
1Y	2	0	LVTTL output signal		
2A	6	I	Differential (LVDS) non-inverting input		
2B	5	I	erential (LVDS) inverting input		
2Y	3	0	LVTTL output signal		

Submit Documentation Feedback

Copyright © 1997–2014, Texas Instruments Incorporated

8 Specifications

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range (2		-0.5	4	V
\/	Input voltage range	Enables and output	-0.5	$V_{CC} + 0.5$	V
VI		A or B	-0.5	4	V
	Continuous total power dissipation See Thermal Information				
T _{stg}	Storage temperature	corage temperature			°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8.2 ESD Ratings

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, bus pins ⁽¹⁾	±8000	V
	Lead temperature 1.6 mm (1/	16 inch) from case for 10 seconds	260	°C

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

			MIN	NOM M	AX UNIT
V _{CC}	Supply voltage		3	3.3	3.6
V _{IH}	High-level input voltage	G, G , 1, 2EN, or 3, 4EN	2		
V _{IL}	Low-level input voltage	G, G, 1, 2EN, or 3, 4EN			0.8
$ V_{ID} $	Magnitude of differential input voltage		0.1		0.6 _V
V _{IC}	Common-mode input voltage (see Figure 1)		$\frac{ V_{\text{ID}} }{2}$	2.4 – \	<u>ID</u>
				V _{CC} -	0.8
T _A	Operating free-air temperature	SN65 prefix	-40		85 °C
'A	Operating nee-all temperature	SN55 prefix	-55	1	25

Copyright © 1997–2014, Texas Instruments Incorporated

⁽²⁾ All voltages, except differential I/O bus voltages, are with respect to the network ground terminal.

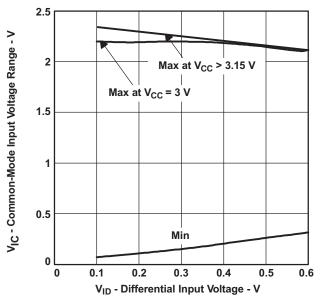


Figure 1. V_{IC} vs V_{ID} and V_{CC}

8.4 Thermal Information

	40	SN	SN55LVDS32		SN65LVDS32, SN65LVDS3486			SN65LVDS9637		
	THERMAL METRIC ⁽¹⁾	FK	J	w	D	NS	PW	D	DGK	UNIT
		20 PINS	16 F	PINS		16 PINS		8 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance				76.4	88.7	111.5		177.5	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance				38.0	46.8	46.4		65.6	
$R_{\theta JB}$	Junction-to-board thermal resistance				33.7	49.1	56.6		97.3	°C/W
Ψлт	Junction-to-top characterization parameter				7.6	12.5	5.5		8.9	
ΨЈВ	Junction-to-board characterization parameter				33.5	48.8	56.1		95.8	
	Derating Factor Above T _A = 25°C	11.0	11.0	8.0	7.6	_	6.2	5.8	3.4	mW/°C
	T _A ≤ 25°C	1375	1375	1000	950	-	774	725	425	
Power	T _A ≤ 70°C	880	880	640	608	-	496	464	272	mW
Rating	T _A ≤ 85°C	715	715	520	494	-	402	377	221	
	T _A ≤ 125°C	275	275	200	_	_	_	_	_	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

8.5 Electrical Characteristics: SN55LVDS32

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT	
V _{ITH+}	Positive-going differential input voltage threshold	See Figure 7, Table 1, and ⁽²⁾			100	mV	
V _{ITH} _	Negative-going differential input voltage threshold (3)	See Figure 7, Table 1, and ⁽²⁾	-100			mV	
V _{OH}	High-level output voltage	$I_{OH} = -8 \text{ mA}$	2.4			V	
V _{OL}	Low-level output voltage	I _{OL} = 8 mA			0.4	V	
	Supply current	Enabled, No load		10	18		
I _{CC}		Disabled		0.25	0.5	mA	
	land surrent (A or B insut)	V _I = 0	-2	-10	-20		
11	Input current (A or B input)	V _I = 2.4 V	-1.2	-3		μΑ	
I _{I(OFF)}	Power-off input current (A or B input)	V _{CC} = 0, V _I = 2.4 V		6	20	μΑ	
I _{IH}	High-level input current (EN, G, or \overline{G} input)	V _{IH} = 2 V			10	μΑ	
I _{IL}	Low-level input current (EN, G, or \overline{G} input)	V _{IL} = 0.8 V			10	μΑ	
I _{OZ}	High-impedance output current	V _O = 0 or V _{CC}			±12	μΑ	

⁽¹⁾ All typical values are at $T_A = 25$ °C and with $V_{CC} = 3.3$ V.

8.6 Electrical Characteristics: SN65LVDSxxxx

over recommended operating conditions (unless otherwise noted)

	PARAME	TER	TEST CONDITIONS	SN6	SN65LVDS32 SN65LVDS3486 SN65LVDS9637			
				MIN	TYP ⁽¹⁾	MAX		
V _{IT+}	Positive-going different threshold	ential input voltage	See Figure 7 and Table 1			100	mV	
V _{IT}	Negative-going diffe threshold (2)	rential input voltage	See Figure 7 and Table 1	-100			mV	
V	Lligh lovel output ve	ltogo	$I_{OH} = -8 \text{ mA}$	2.4			V	
V _{OH}	High-level output vo	nage	$I_{OH} = -4 \text{ mA}$	2.8			V	
V _{OL}	Low-level output vol	tage	I _{OL} = 8 mA			0.4	V	
		SN65LVDS32,	Enabled, No load		10	18		
I _{CC}	Supply current	SN65LVDS3486	Disabled		0.25	0.5	mA	
		SN65LVDS9637	No load		5.5	10		
	Lauret avenue et (A au F	1 ' (-)	V _I = 0	-2	-10	-20	A	
11	Input current (A or E	s inputs)	V _I = 2.4 V	-1.2	-3		μΑ	
I _{I(OFF)}	Power-off input curre	ent (A or B input)	V _{CC} = 0, V _I = 3.6 V		6	20	μΑ	
I _{IH}	High-level input curr	ent (EN, G, or G input)	V _{IH} = 2 V			10	μΑ	
I _{IL}	Low-level input curre	ent (EN, G, or G input)	V _{IL} = 0.8 V			10	μΑ	
I _{OZ}	High-impedance out	put current	V _O = 0 or V _{CC}			±10	μΑ	

⁽¹⁾ All typical values are at T_A = 25°C and with V_{CC} = 3.3 V.

Copyright © 1997–2014, Texas Instruments Incorporated

²⁾ $|V_{ITH}| = 200 \text{ mV}$ for operation at -55°C

⁽³⁾ The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for the negative-going differential input voltage threshold only.

⁽²⁾ The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for the negative-going differential input voltage threshold only.

8.7 Switching Characteristics: SN55LVDS32

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output		1.3	2.3	6	ns
t _{PHL}	Propagation delay time, high-to-low-level output		1.4	2.2	6.1	ns
t _{sk(o)}	Channel-to-channel output skew ⁽¹⁾	C _L = 10 pF, See Figure 8		0.1		ns
t _r	Output signal rise time, 20% to 80%	Coo riguro o		0.6		ns
t _f	Output signal fall time, 80% to 20%			0.7		ns
t _{PHZ}	Propagation delay time, high-level-to-high-impedance output			6.5	12	ns
t _{PLZ}	Propagation delay time, low-level-to-high-impedance output	Can Figure 0		5.5	12	ns
t _{PZH}	Propagation delay time, high-impedance-to-high-level output	See Figure 9		8	14	ns
t _{PZL}	Propagation delay time, high-impedance-to-low-level output			3	12	ns

⁽¹⁾ $t_{sk(0)}$ is the maximum delay time difference between drivers on the same device.

8.8 Switching Characteristics: SN65LVDSxxxx

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	SN65 SN65	UNIT		
			MIN	TYP	MAX	
t _{PLH}	Propagation delay time, low-to-high-level output		1.5	2.1	3	ns
t _{PHL}	Propagation delay time, high-to-low-level output		1.5	2.1	3	ns
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})			0	0.4	ns
t _{sk(o)}	Channel-to-channel output skew ⁽¹⁾	C _L = 10 pF, See Figure 8		0.1	0.3	ns
t _{sk(pp)}	Part-to-part skew ⁽²⁾	- Occ rigure o			1	ns
t _r	Output signal rise time, 20% to 80%			0.6		ns
t _f	Output signal fall time, 80% to 20%			0.7		ns
t _{PHZ}	Propagation delay time, high-level-to-high-impedance output			6.5	12	ns
t _{PLZ}	Propagation delay time, low-level-to-high- impedance output	05		5.5	12	ns
t _{PZH}	Propagation delay time, high-impedance-to-high-level output	See Figure 9		8	12	ns
t _{PZL}	Propagation delay time, high-impedance-to-low-level output			3	12	ns

⁽¹⁾ t_{sk(o)} is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

⁽²⁾ t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, same temperature, and have identical packages and test circuits.

8.9 Typical Characteristics

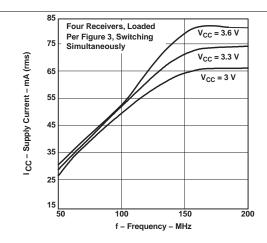


Figure 2. SN55LVDS32, SN65LVDS32 Supply Current vs Frequency

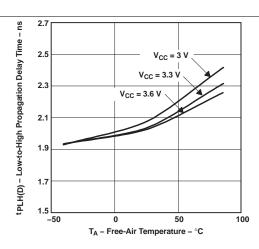


Figure 3. Low-to-High Propagation Delay Time vs Free-Air Temperature

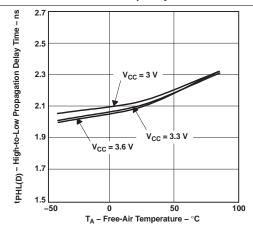


Figure 4. High-to-Low Propagation Delay Time vs Free-Air Temperature

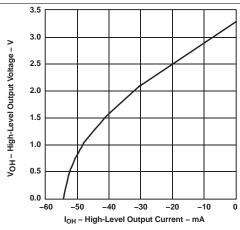


Figure 5. High-Level Output Voltage vs High-Level Output
Current

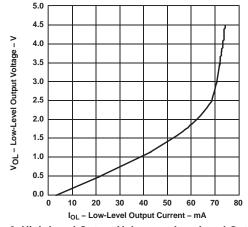


Figure 6. High-Level Output Voltage vs Low-Level Output Current

9 Parameter Measurement Information

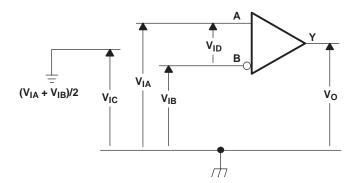
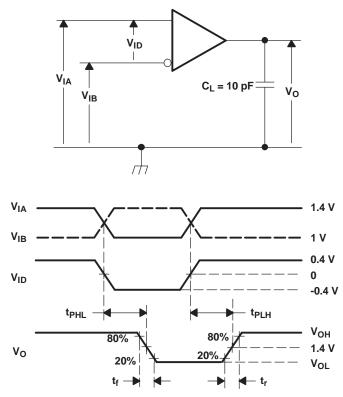
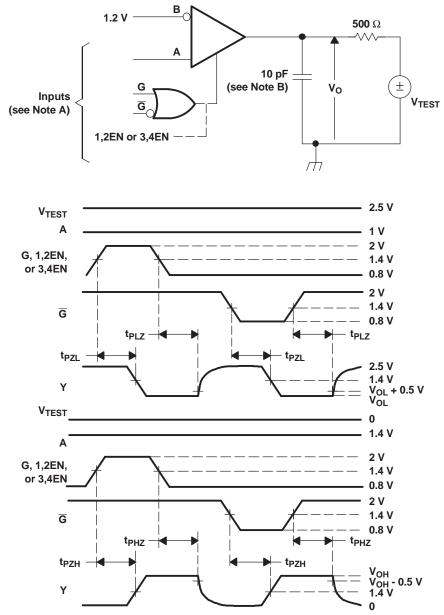



Figure 7. Voltage Definitions

Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages

APPLIED \	VOLTAGES	RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON-MODE INPUT VOLTAGE			
V _{IA} (V)	V _{IB} (V)	V _{ID} (mV)	V _{IC} (V)			
1.25	1.15	100	1.2			
1.15	1.25	-100	1.2			
2.4	2.3	100	2.35			
2.3	2.4	-100	2.35			
0.1	0	100	0.05			
0	0.1	-100	0.05			
1.5	0.9	600	1.2			
0.9	1.5	-600	1.2			
2.4	1.8	600	2.1			
1.8	2.4	-600	2.1			
0.6	0	600	0.3			
0	0.6	-600	0.3			

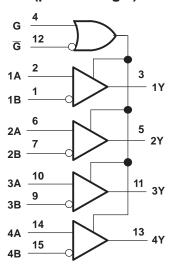


- A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns.
- B. C_L includes instrumentation and fixture capacitance within 6 mm of the device under test.

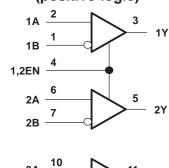
Figure 8. Timing Test Circuit and Waveforms

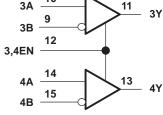
- A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns.
- B. C_L includes instrumentation and fixture capacitance within 6 mm of the device under test.

Figure 9. Enable or Disable Time Test Circuit and Waveforms

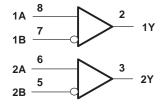

10 Detailed Description

10.1 Overview


The SNx5LVDSxx devices are LVDS line receivers. They operate from a single supply that is nominally 3.3 V, but can be as low as 3.0 V and as high as 3.6 V. The input signals to the SNx5LVDSxx device are differential LVDS signals. The output of the device is an LVTTL digital signal. This LVDS receiver requires a ±100-mV input signal to determine the correct state of the received signal. Compliant LVDS receivers can accept input signals with a common-mode range between 0.05 V and 2.35 V. As the common-mode output voltage of an LVDS driver is 1.2 V, the SNx5LVDSxx correctly determines the line state when operated with a 1-V ground shift between driver and receiver.


10.2 Functional Block Diagram

'LVDS32 logic diagram (positive logic)



SN65LVDS3486D logic diagram (positive logic)

SN65LVDS9637D logic diagram (positive logic)

10.3 Feature Description

10.3.1 Receiver Output States

When the receiver differential input signal is greater than 100 mV, the receiver output is high; and when the differential input voltage is below –100 mV, the receiver output is low. When the input voltage is between these thresholds (for example, between –100 mV and 100 mV), the receiver output is indeterminate. It may be high or low. A special case occurs when the input to the receiver is open-circuited, which is covered in *Receiver Open-Circuit Fail-Safe*. When the receiver is disabled, the receiver outputs will be high-impedance.

10.3.2 Receiver Open-Circuit Fail-Safe

One of the most common problems with differential signaling applications is how the system responds when no differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers in that its output logic state can be indeterminate when the differential input voltage is between -100 mV and 100 mV and within its recommended input common-mode voltage range. However, the SNx5LVDSxx receiver is different in how it handles the open-input circuit situation.

Open-circuit means that there is little or no input current to the receiver from the data line itself. This could be when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS receiver pulls each line of the signal to V_{CC} through a 300-k Ω resistor as shown in Figure 10. The fail-safe feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the output to a high level regardless of the differential input voltage.

Feature Description (continued)

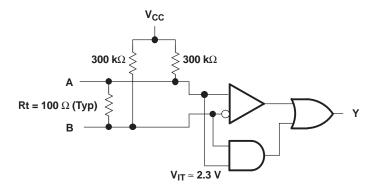


Figure 10. Open-Circuit Fail Safe of the LVDS Receiver

It is only under these conditions that the output of the receiver is valid with less than a 100-mV differential input voltage magnitude. The presence of the termination resistor, Rt does not affect the fail-safe function as long as it is connected as shown in Figure 10. Other termination circuits may allow a dc-current to ground that could defeat the pullup currents from the receiver and the fail-safe feature.

10.3.3 Common-Mode Range vs Supply Voltage

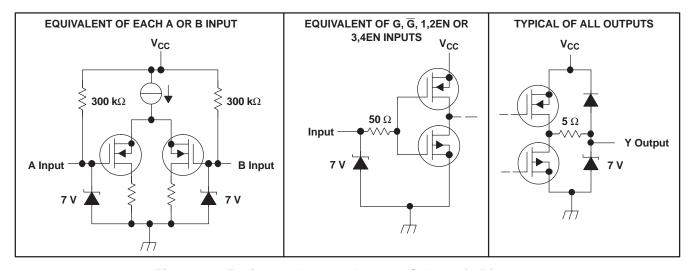
The SNx5LVDSxx receivers operate over an input common-mode range of $\frac{1}{2} \times V_{ID}$ V to 2.4 – $\frac{1}{2} \times V_{ID}$ V. If the input signal is anywhere within this range and has a differential magnitude greater than or equal to 100 mV, the receivers correctly output the LVDS bus state.

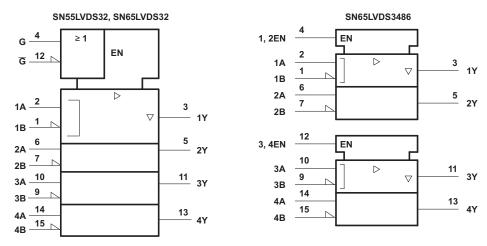
10.3.4 General Purpose Comparator

While the SNx5LVDSxx receivers are LVDS standard-compliant receivers, their utility and applications extend to a wider range of signals. As long as the input signals are within the required differential and common-mode voltage ranges mentioned above, the receiver output will be a faithful representation of the input signal.

10.3.5 Receiver Equivalent Schematics

The receiver equivalent input and output schematic diagrams are shown in Figure 11. The receiver input is a high-impedance differential pair. 7-V Zener diodes are included on each input to provide ESD protection. The receiver output structure shown is a CMOS inverter with an additional Zener diode, again for ESD protection.




Figure 11. Equivalent Input and Output Schematic Diagrams

10.4 Device Functional Modes

SN55LVDS32, SN6	S5LVDS32	(1)		SN65LVDS3486 ⁽	1)	OUTPUT Y H ? L		
DIFFERENTIAL INPUT	ENA	BLES	OUTPUT	DIFFERENTIAL INPUT	ENABLE	OUTPUT		
A, B	G	G	Y	A, B	EN	Υ		
V _{ID} ≥ 100 mV	H X H X L H			V _{ID} ≥ 100 mV	Н	Н		
-100 mV < V _{ID} < 100 mV	H X	X L	?	-100 mV < V _{ID} < 100 mV	Н	?		
V _{ID} ≤ −100 mV	H X	X L	L L	V _{ID} ≤ −100 mV	Н	L		
X	L	Н	Z	X	L	Z		
Open	H X	X L	H H	Open	Н	Н		

(1) H = high level, L = low level, X = irrelevant, Z = high-impedance (off), ? = indeterminate

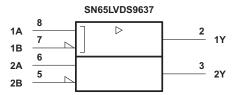

This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Figure 12. SN55LVDS32, SN65LVDS32, and SN65LVDS3486 Logic Symbols

Table 2. Function Table SN65LVDS9637(1)

DIFFERENTIAL INPUT A, B	OUTPUT Y
V _{ID} ≥ 100 mV	Н
$-100 \text{ mV} < V_{ID} < 100 \text{ mV}$?
V _{ID} ≤ −100 mV	L
Open	Н

(1) H = high level, L = low level, ? = indeterminate

This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Figure 13. SN65LVDS9637 Logic Symbol

11 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

11.1 Application Information

The SNx5LVDSxx devices are LVDS receivers. These devices are generally used as building blocks for high-speed, point-to-point, data transmission where ground differences are less than 1 V. LVDS drivers and receivers provide high-speed signaling rates that are often implemented with ECL class devices without the ECL power and dual-supply requirements.

11.2 Typical Application

11.2.1 Point-to-Point Communications

The most basic application for LVDS buffers, as found in this data sheet, is for point-to-point communications of digital data, as shown in Figure 14.

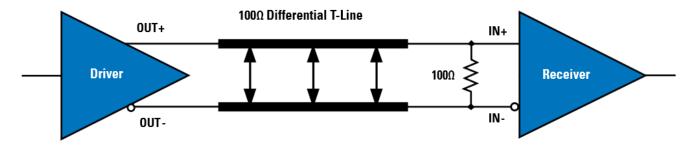


Figure 14. Point-to-Point Topology

A point-to-point communications channel has a single transmitter (driver) and a single receiver. This communications topology is often referred to as simplex. In Figure 14 the driver receives a single-ended input signal and the receiver outputs a single-ended recovered signal. The LVDS driver converts the single-ended input to a differential signal for transmission over a balanced interconnecting media of $100-\Omega$ characteristic impedance. The conversion from a single-ended signal to an LVDS signal retains the digital data payload while translating to a signal whose features are more appropriate for communication over extended distances or in a noisy environment.

11.2.1.1 Design Requirements

DESIGN PARAMETERS	EXAMPLE VALUE				
Driver Supply Voltage (V _{CCD})	3.0 to 3.6 V				
Driver Input Voltage	0.8 to 3.3 V				
Driver Signaling Rate	DC to 100 Mbps				
Interconnect Characteristic Impedance	100 Ω				
Termination Resistance	100 Ω				
Number of Receiver Nodes	1				
Receiver Supply Voltage (V _{CCR})	3.0 to 3.6 V				
Receiver Input Voltage	0 to 24 V				
Receiver Signaling Rate	DC to 100 Mbps				
Ground shift between driver and receiver	±1 V				

11.2.1.2 Detailed Design Procedure

11.2.1.2.1 Equipment

- Hewlett Packard HP6624A DC power supply
- Tektronix TDS7404 Real Time Scope
- Agilent ParBERT E4832A

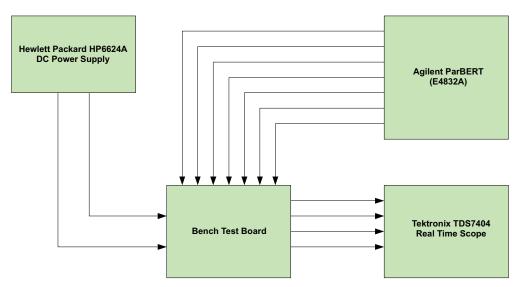


Figure 15. Equipment Setup

11.2.1.2.2 Driver Supply Voltage

An LVDS driver is operated from a single supply. The device can support operation with a supply as low as 3 V and as high as 3.6 V. The differential output voltage is nominally 340 mV over the complete output range. The minimum output voltage stays within the specified LVDS limits (247 mV to 454 mV) for a 3.3-V supply.

11.2.1.2.3 Driver Bypass Capacitance

Bypass capacitors play a key role in power distribution circuitry. Specifically, they create low-impedance paths between power and ground. At low frequencies, a good digital power supply offers very-low-impedance paths between its terminals. However, as higher frequency currents propagate through power traces, the source is quite often incapable of maintaining a low-impedance path to ground. Bypass capacitors are used to address this shortcoming. Usually, large bypass capacitors (10 μ F to 1000 μ F) at the board-level do a good job up into the kHz range. Due to their size and length of their leads, they tend to have large inductance values at the switching frequencies of modern digital circuitry. To solve this problem, one should resort to the use of smaller capacitors (nF to μ F range) installed locally next to the integrated circuit.

Multilayer ceramic chip or surface-mount capacitors (size 0603 or 0805) minimize lead inductances of bypass capacitors in high-speed environments, because their lead inductance is about 1 nH. For comparison purposes, a typical capacitor with leads has a lead inductance around 5 nH.

The value of the bypass capacitors used locally with LVDS chips can be determined by the following formula according to Johnson, equations 8.18 to 8.21. A conservative rise time of 200 ps and a worst-case change in supply current of 1 A covers the whole range of LVDS devices offered by Texas Instruments. In this example, the maximum power supply noise tolerated is 200 mV; however, this figure varies depending on the noise budget available in your design. (1)

$$C_{\text{chip}} = \left(\frac{\Delta I_{\text{Maximum Step Change Supply Current}}}{\Delta V_{\text{Maximum Power Supply Noise}}}\right) \times T_{\text{Rise Time}} \tag{1}$$

 Howard Johnson & Martin Graham. 1993. High Speed Digital Design – A Handbook of Black Magic. Prentice Hall PRT. ISBN number 013395724.

$$C_{LVDS} = \left(\frac{1A}{0.2V}\right) \times 200 \text{ ps} = 0.001 \,\mu\text{F}$$
 (2)

The following example lowers lead inductance and covers intermediate frequencies between the board-level capacitor (>10 μ F) and the value of capacitance found above (0.001 μ F). You should place the smallest value of capacitance as close as possible to the chip.

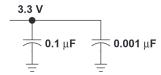


Figure 16. Recommended LVDS Bypass Capacitor Layout

11.2.1.2.4 Driver Output Voltage

A standard-compliant LVDS driver output is a 1.2-V common-mode voltage, with a nominal differential output signal of 340 mV. This 340 mV is the absolute value of the differential swing $(V_{OD} = |V^+ - V^-|)$. The peak-to-peak differential voltage is twice this value, or 680 mV.

11.2.1.2.5 Interconnecting Media

The physical communication channel between the driver and the receiver may be any balanced paired metal conductors meeting the requirements of the LVDS standard, the key points which will be included here. This media may be a twisted pair, twinax, flat ribbon cable, or PCB traces. The nominal characteristic impedance of the interconnect should be between 100 Ω and 120 Ω with a variation of no more than 10% (90 Ω to 132 Ω).

11.2.1.2.6 PCB Transmission Lines

As per SNLA187, Figure 17 depicts several transmission line structures commonly used in printed-circuit boards (PCBs). Each structure consists of a signal line and a return path with uniform cross-section along its length. A microstrip is a signal trace on the top (or bottom) layer, separated by a dielectric layer from its return path in a ground or power plane. A stripline is a signal trace in the inner layer, with a dielectric layer in between a ground plane above and below the signal trace. The dimensions of the structure along with the dielectric material properties determine the characteristic impedance of the transmission line (also called controlled-impedance transmission line).

When two signal lines are placed close by, they form a pair of coupled transmission lines. Figure 17 shows examples of edge-coupled microstrips, and edge-coupled or broad-side-coupled striplines. When excited by differential signals, the coupled transmission line is referred to as a differential pair. The characteristic impedance of each line is called odd-mode impedance. The sum of the odd-mode impedances of each line is the differential impedance of the differential pair. In addition to the trace dimensions and dielectric material properties, the spacing between the two traces determines the mutual coupling and impacts the differential impedance. When the two lines are immediately adjacent; for example, S is less than 2W, the differential pair is called a tightly-coupled differential pair. To maintain constant differential impedance along the length, it is important to keep the trace width and spacing uniform along the length, as well as maintain good symmetry between the two lines.

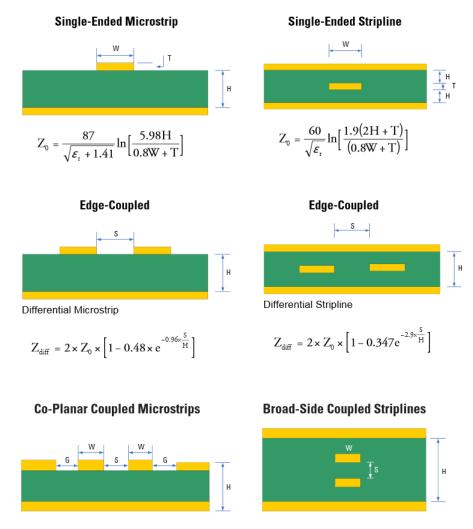
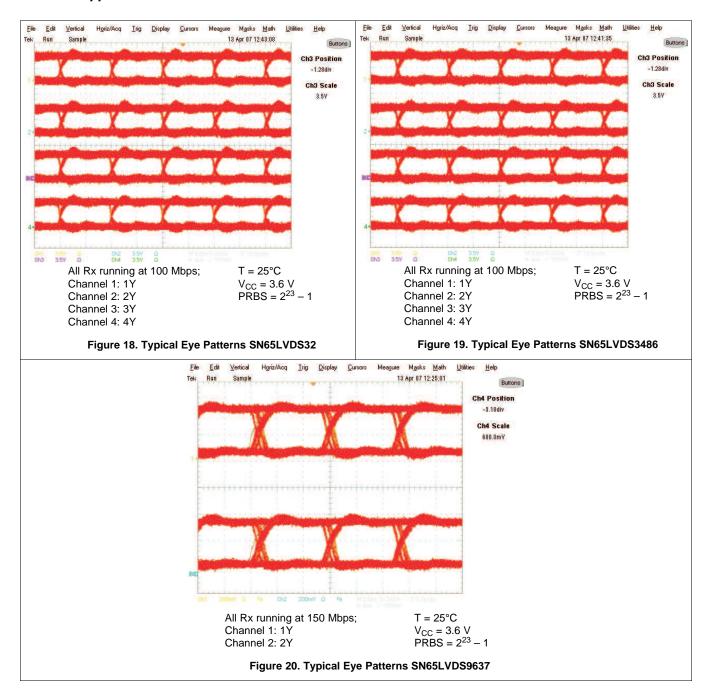


Figure 17. Controlled-Impedance Transmission Lines

11.2.1.2.7 Termination Resistor


An LVDS communication channel employs a current source driving a transmission line which is terminated with a resistive load. This load serves to convert the transmitted current into a voltage at the receiver input. To ensure incident wave switching (which is necessary to operate the channel at the highest signaling rate), the termination resistance should be matched to the characteristic impedance of the transmission line. The designer should ensure that the termination resistance is within 10% of the nominal media characteristic impedance. If the transmission line is targeted for $100-\Omega$ impedance, the termination resistance should be between 90 and 110 Ω .

The line termination resistance should be located as close as possible to the receiver, thereby minimizing the stub length from the resistor to the receiver. The limiting case would be to incorporate the termination resistor into the receiver, which is exactly what is offered with a device like the SN65LVDT386.

While we talk in this section about point-to-point communications, a word of caution is useful when a multidrop topology is used. In such topologies, line termination resistors are to be located only at the end(s) of the transmission line. In such an environment, LVDS receivers could be used for loads branching off the main bus with an LVDT receiver used only at the bus end.

11.2.1.3 Application Curves

12 Power Supply Recommendations

The LVDS driver and receivers in this data sheet are designed to operate from a single power supply. Both drivers and receivers operate with supply voltages in the range of 2.4 V to 3.6 V. In a typical application, a driver and a receiver may be on separate boards, or even separate equipment. In these cases, separate supplies would be used at each location. The expected ground potential difference between the driver power supply and the receiver power supply would be less than |±1 V|. Board-level and local device-level bypass capacitance should be used and are covered in *Driver Bypass Capacitance*.

13 Layout

13.1 Layout Guidelines

13.1.1 Microstrip vs. Stripline Topologies

As per SLLD009, printed-circuit boards usually offer designers two transmission line options: Microstrip and stripline. Microstrips are traces on the outer layer of a PCB, as shown in Figure 21.

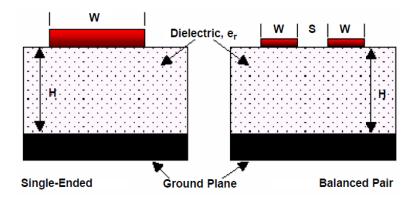


Figure 21. Microstrip Topology

On the other hand, striplines are traces between two ground planes. Striplines are less prone to emissions and susceptibility problems because the reference planes effectively shield the embedded traces. However, from the standpoint of high-speed transmission, juxtaposing two planes creates additional capacitance. TI recommends routing LVDS signals on microstrip transmission lines, if possible. The PCB traces allow designers to specify the necessary tolerances for Z_0 based on the overall noise budget and reflection allowances. Footnotes 2, 3, and 4 provide formulas for Z_0 and z_0 for differential and single-ended traces. (1) (2) (3)

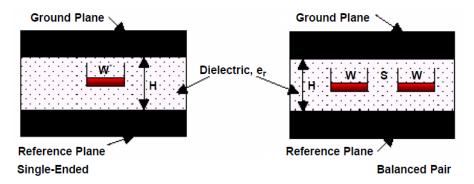


Figure 22. Stripline Topology

- (1) Howard Johnson & Martin Graham.1993. High Speed Digital Design A Handbook of Black Magic. Prentice Hall PRT. ISBN number 013395724
- (2) Mark I. Montrose. 1996. Printed Circuit Board Design Techniques for EMC Compliance. IEEE Press. ISBN number 0780311310.
- (3) Clyde F. Coombs, Jr. Ed, Printed Circuits Handbook, McGraw Hill, ISBN number 0070127549.

Layout Guidelines (continued)

13.1.2 Dielectric Type and Board Construction

The speeds at which signals travel across the board dictates the choice of dielectric. FR-4, or equivalent, usually provides adequate performance for use with LVDS signals. If rise or fall times of TTL/CMOS signals are less than 500 ps, empirical results indicate that a material with a dielectric constant near 3.4, such as Rogers[™] 4350 or Nelco N4000-13 is better suited. Once the designer chooses the dielectric, there are several parameters pertaining to the board construction that can affect performance. The following set of guidelines were developed experimentally through several designs involving LVDS devices:

- Copper weight: 15 g or 1/2 oz start, plated to 30 g or 1 oz.
- All exposed circuitry should be solder-plated (60/40) to 7.62 µm or 0.0003 in (minimum).
- Copper plating should be 25.4 µm or 0.001 in (minimum) in plated-through-holes.
- · Solder mask over bare copper with solder hot-air leveling

13.1.3 Recommended Stack Layout

Following the choice of dielectrics and design specifications, you should decide how many levels to use in the stack. To reduce the TTL/CMOS to LVDS crosstalk, it is a good practice to have at least two separate signal planes as shown in Figure 23.

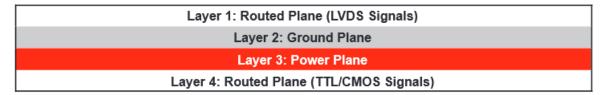


Figure 23. Four-Layer PCB Board

NOTE

The separation between layers 2 and 3 should be $127 \mu m$ (0.005 in). By keeping the power and ground planes tightly coupled, the increased capacitance acts as a bypass for transients.

One of the most common stack configurations is the six-layer board, as shown in Figure 24.

Figure 24. Six-Layer PCB Board

In this particular configuration, it is possible to isolate each signal layer from the power plane by at least one ground plane. The result is improved signal integrity; however, fabrication is more expensive. Using the 6-layer board is preferable, because it offers the layout designer more flexibility in varying the distance between signal layers and referenced planes, in addition to ensuring reference to a ground plane for signal layers 1 and 6.

24 Submit

Layout Guidelines (continued)

13.1.4 Separation Between Traces

The separation between traces depends on several factors; however, the amount of coupling that can be tolerated usually dictates the actual separation. Low-noise coupling requires close coupling between the differential pair of an LVDS link to benefit from the electromagnetic field cancellation. The traces should be $100-\Omega$ differential and thus coupled in the manner that best fits this requirement. In addition, differential pairs should have the same electrical length to ensure that they are balanced, thus minimizing problems with skew and signal reflection.

In the case of two adjacent single-ended traces, one should use the 3-W rule, which stipulates that the distance between two traces should be greater than two times the width of a single trace, or three times its width measured from trace center to trace center. This increased separation effectively reduces the potential for crosstalk. The same rule should be applied to the separation between adjacent LVDS differential pairs, whether the traces are edge-coupled or broad-side-coupled.

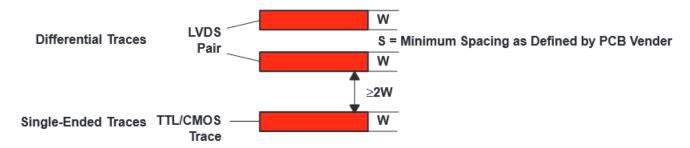


Figure 25. 3-W Rule for Single-Ended and Differential Traces (Top View)

You should exercise caution when using autorouters, because they do not always account for all factors affecting crosstalk and signal reflection. For instance, it is best to avoid sharp 90° turns to prevent discontinuities in the signal path. Using successive 45° turns tends to minimize reflections.

13.1.5 Crosstalk and Ground Bounce Minimization

To reduce crosstalk, it is important to provide a return path to high-frequency currents that is as close as possible to its originating trace. A ground plane usually achieves this. Because the returning currents always choose the path of lowest inductance, they are most likely to return directly under the original trace, thus minimizing crosstalk. Lowering the area of the current loop lowers the potential for crosstalk. Traces kept as short as possible with an uninterrupted ground plane running beneath them emit the minimum amount of electromagnetic field strength. Discontinuities in the ground plane increase the return path inductance and should be avoided.

13.2 Layout Example

At least two or three times the width of an individual trace should separate single-ended traces and differential pairs to minimize the potential for crosstalk. Single-ended traces that run in parallel for less than the wavelength of the rise or fall times usually have negligible crosstalk. Increase the spacing between signal paths for long parallel runs to reduce crosstalk. Boards with limited real estate can benefit from the staggered trace layout, as shown in Figure 26.

Layout Example (continued)

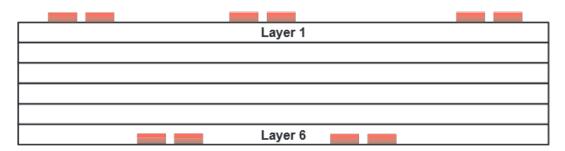


Figure 26. Staggered Trace Layout

This configuration lays out alternating signal traces on different layers; thus, the horizontal separation between traces can be less than 2 or 3 times the width of individual traces. To ensure continuity in the ground signal path, TI recommends having an adjacent ground via for every signal via, as shown in Figure 27. Note that vias create additional capacitance. For example, a typical via has a lumped capacitance effect of 1/2 pF to 1 pF in FR4.

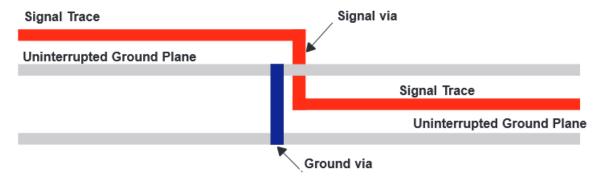


Figure 27. Ground Via Location (Side View)

Short and low-impedance connection of the device ground pins to the PCB ground plane reduces ground bounce. Holes and cutouts in the ground planes can adversely affect current return paths if they create discontinuities that increase returning current loop areas.

To minimize EMI problems, TI recommends avoiding discontinuities below a trace (for example, holes, slits, and so on) and keeping traces as short as possible. Zoning the board wisely by placing all similar functions in the same area, as opposed to mixing them together, helps reduce susceptibility issues.

14 Device and Documentation Support

14.1 Device Support

14.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

14.1.2 Other LVDS Products

For other products and application notes in the LVDS and LVDM product families visit our Web site at http://www.ti.com/sc/datatran.

14.2 Documentation Support

14.2.1 Related Information

IBIS modeling is available for this device. Contact the local TI sales office or the TI Web site at www.ti.com for more information.

For more application guidelines, see the following documents:

- Low-Voltage Differential Signaling Design Notes (SLLA014)
- Interface Circuits for TIA/EIA-644 (LVDS) (SLLA038)
- Reducing EMI With LVDS (SLLA030)
- Slew Rate Control of LVDS Circuits (SLLA034)
- Using an LVDS Receiver With RS-422 Data (SLLA031)
- Evaluating the LVDS EVM (SLLA033)

14.3 Related Links

Table 3 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 3. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN55LVDS32	Click here	Click here	Click here	Click here	Click here
SN65LVDS32	Click here	Click here	Click here	Click here	Click here
SN65LVDS3486	Click here	Click here	Click here	Click here	Click here
SN65LVDS9637	Click here	Click here	Click here	Click here	Click here

14.4 Trademarks

Rogers is a trademark of Rogers Corporation.

All other trademarks are the property of their respective owners.

14.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

14.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

15 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

15-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9762201Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9762201Q2A SNJ55 LVDS32FK	Samples
5962-9762201QEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9762201QE A SNJ55LVDS32J	Samples
5962-9762201QFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9762201QF A SNJ55LVDS32W	Samples
SN55LVDS32W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN55LVDS32W	Samples
SN65LVDS32D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVDS32	Samples
SN65LVDS32DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVDS32	Samples
SN65LVDS32DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVDS32	Samples
SN65LVDS32DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVDS32	Samples
SN65LVDS32NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVDS32	Samples
SN65LVDS32PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVDS32	Samples
SN65LVDS32PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVDS32	Samples
SN65LVDS32PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVDS32	Samples
SN65LVDS3486D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVDS3486	Samples
SN65LVDS3486DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVDS3486	Samples
SN65LVDS3486DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVDS3486	Samples

15-Apr-2017

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Sample
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN65LVDS3486DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVDS3486	Sample
SN65LVDS9637D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	DK637	Sample
SN65LVDS9637DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	DK637	Sample
SN65LVDS9637DGK	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AXF	Sample
SN65LVDS9637DGKG4	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AXF	Sample
SN65LVDS9637DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AXF	Sample
SN65LVDS9637DGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AXF	Sample
SN65LVDS9637DGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	L37	Sample
SN65LVDS9637DGNG4	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	L37	Sample
SN65LVDS9637DGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	L37	Sample
SN65LVDS9637DGNRG4	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	L37	Sample
SN65LVDS9637DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	DK637	Sample
SN65LVDS9637DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	DK637	Sample
SNJ55LVDS32FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 9762201Q2A SNJ55 LVDS32FK	Sample
SNJ55LVDS32J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9762201QE A SNJ55LVDS32J	Sample
SNJ55LVDS32W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9762201QF A SNJ55LVDS32W	Sample

PACKAGE OPTION ADDENDUM

15-Apr-2017

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

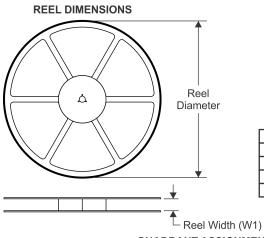
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

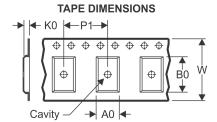
OTHER QUALIFIED VERSIONS OF SN55LVDS32:

Catalog: SN75LVDS32

Space: SN55LVDS32-SP

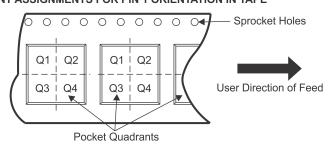
15-Apr-2017


NOTE: Qualified Version Definitions:

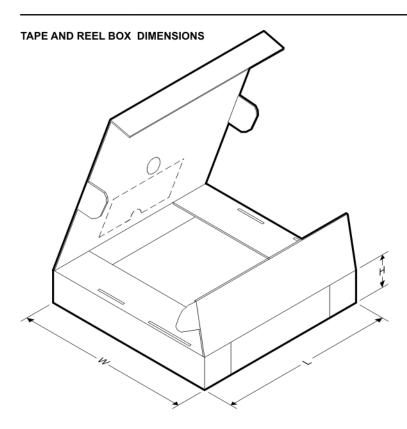

- Catalog TI's standard catalog product
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Aug-2016


TAPE AND REEL INFORMATION

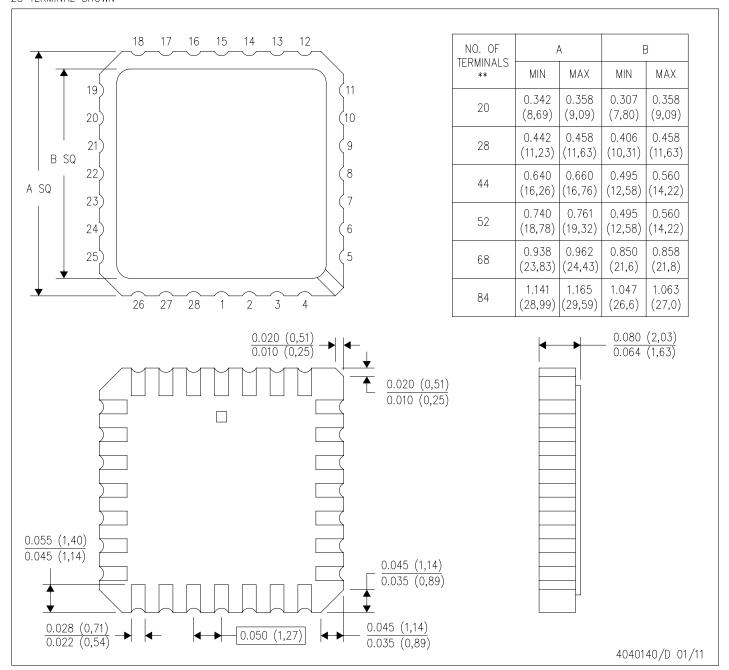
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LVDS32DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN65LVDS32NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN65LVDS32PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN65LVDS3486DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN65LVDS9637DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
SN65LVDS9637DGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
SN65LVDS9637DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65LVDS9637DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 24-Aug-2016

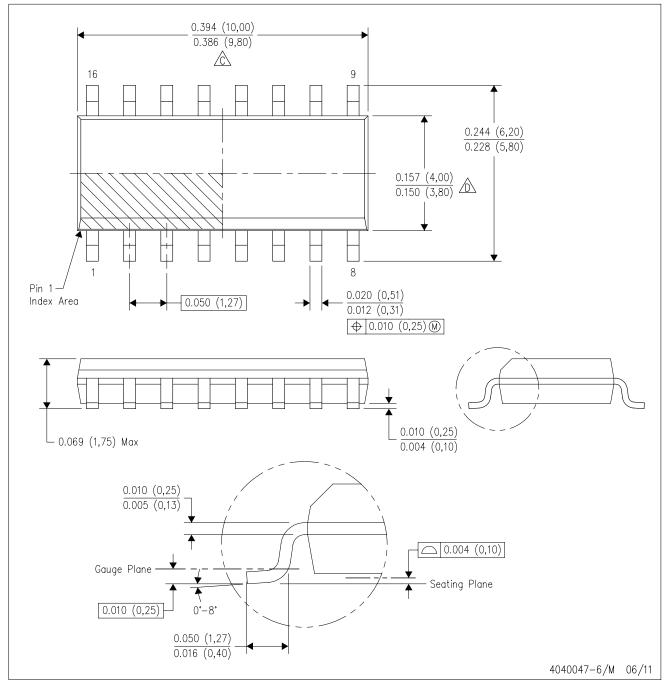

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVDS32DR	SOIC	D	16	2500	333.2	345.9	28.6
SN65LVDS32NSR	SO	NS	16	2000	367.0	367.0	38.0
SN65LVDS32PWR	TSSOP	PW	16	2000	367.0	367.0	38.0
SN65LVDS3486DR	SOIC	D	16	2500	367.0	367.0	38.0
SN65LVDS9637DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
SN65LVDS9637DGNR	MSOP-PowerPAD	DGN	8	2500	358.0	335.0	35.0
SN65LVDS9637DR	SOIC	D	8	2500	340.5	338.1	20.6
SN65LVDS9637DR	SOIC	D	8	2500	367.0	367.0	38.0

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

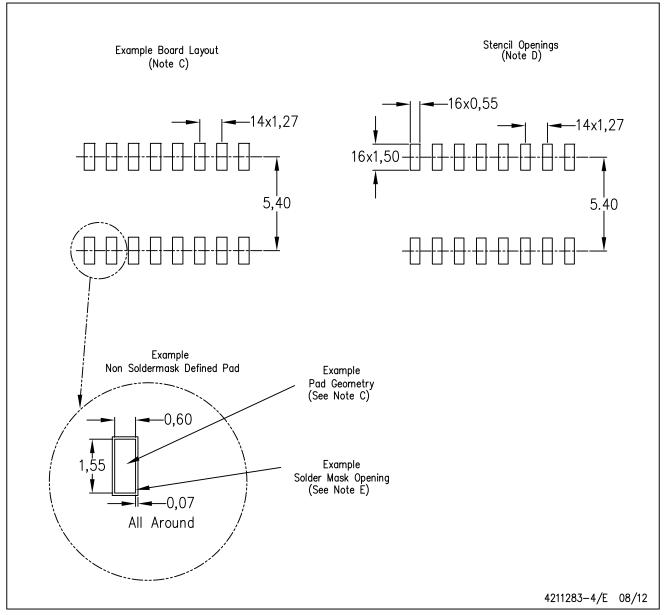
28 TERMINAL SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

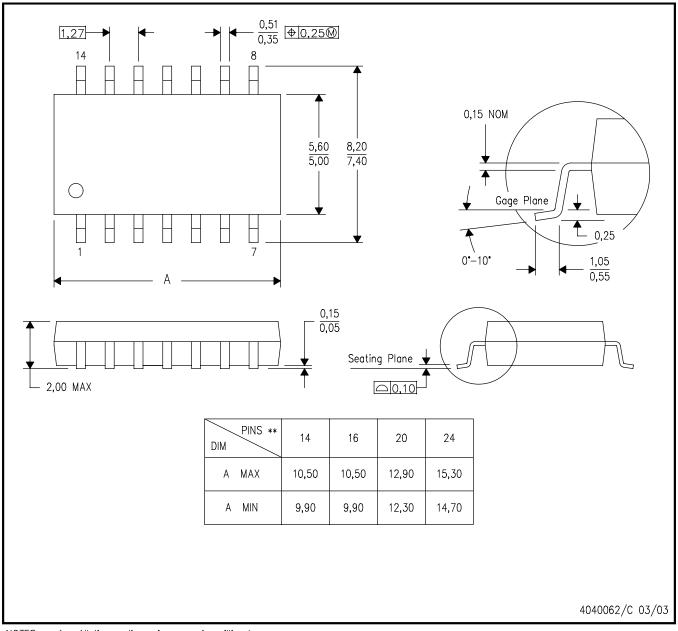

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

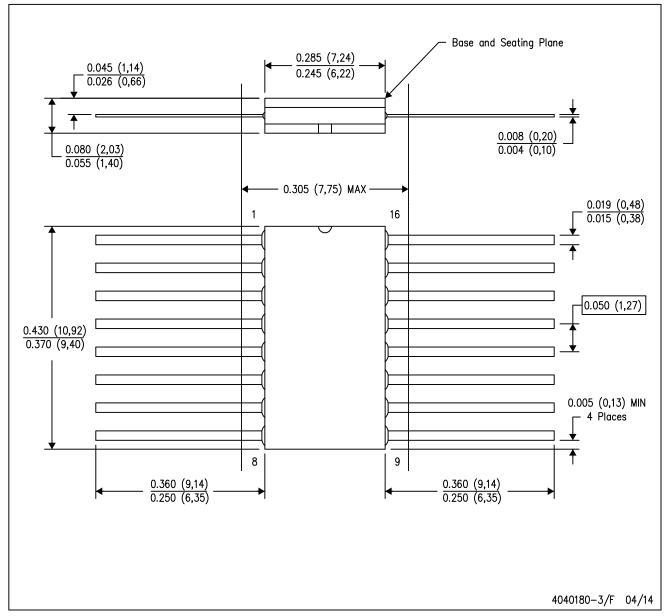


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

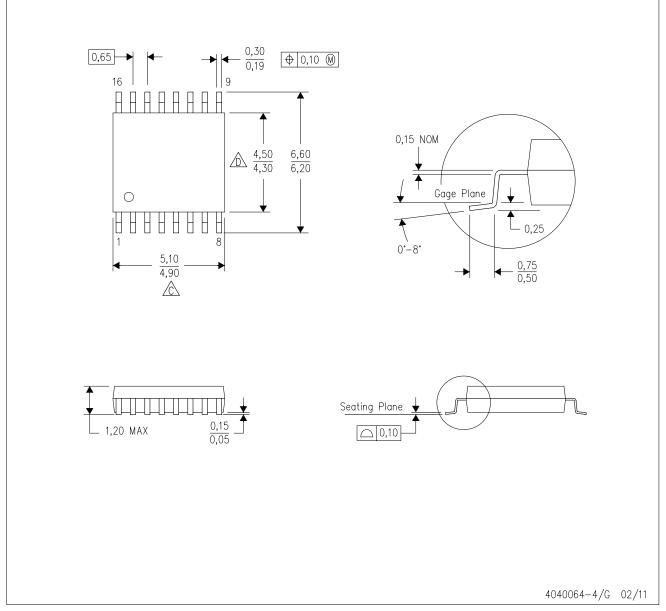
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F16)

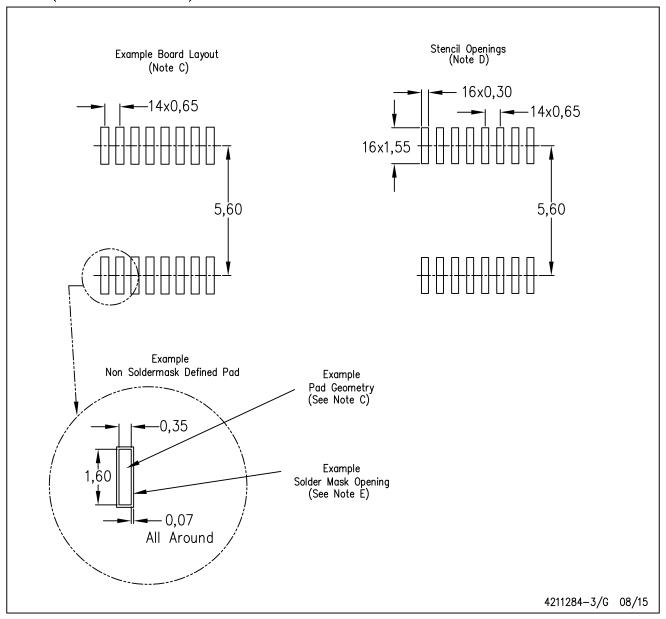
CERAMIC DUAL FLATPACK



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

PW (R-PDSO-G16)

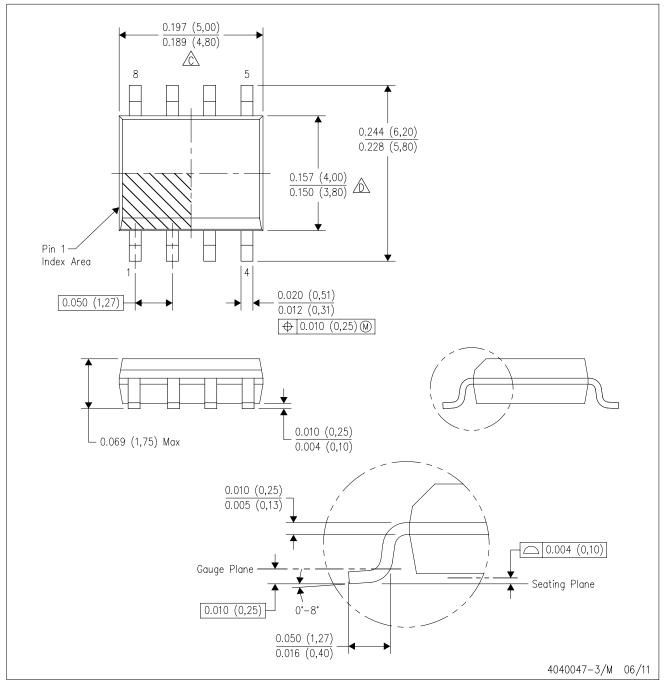
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

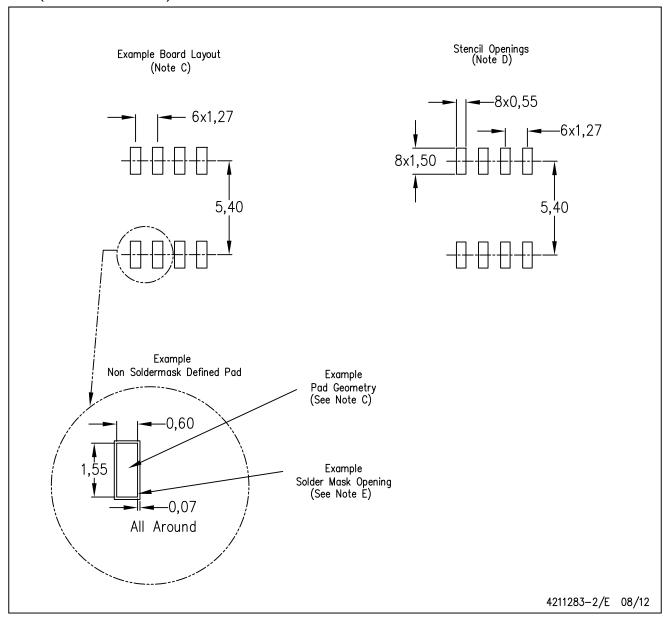
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

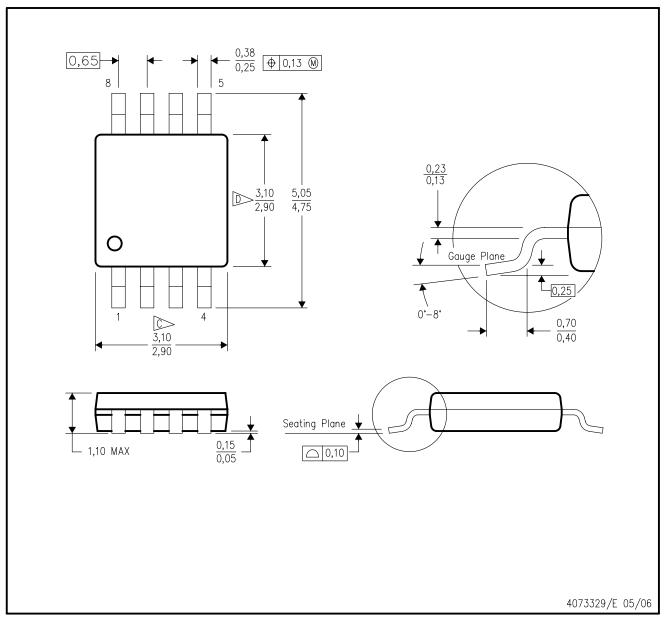
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

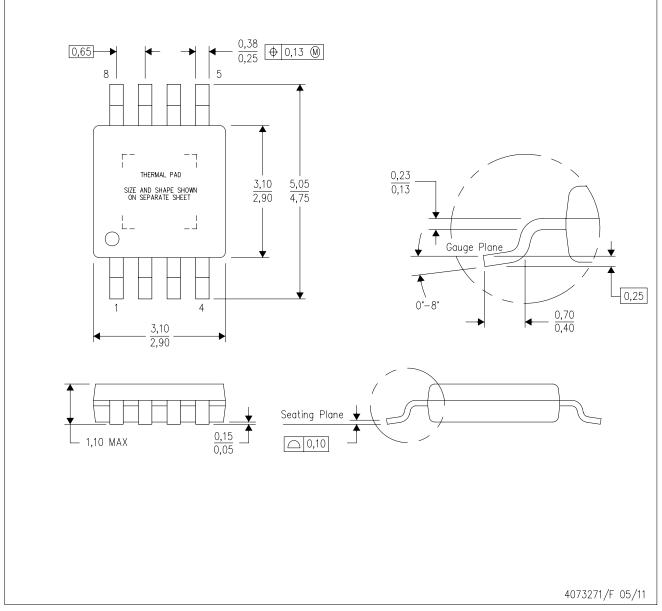
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGN (S-PDSO-G8)

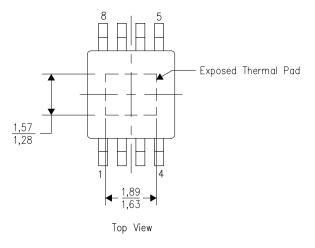
PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-187 variation AA-T

PowerPAD is a trademark of Texas Instruments.

DGN (S-PDSO-G8)


PowerPAD™ PLASTIC SMALL OUTLINE

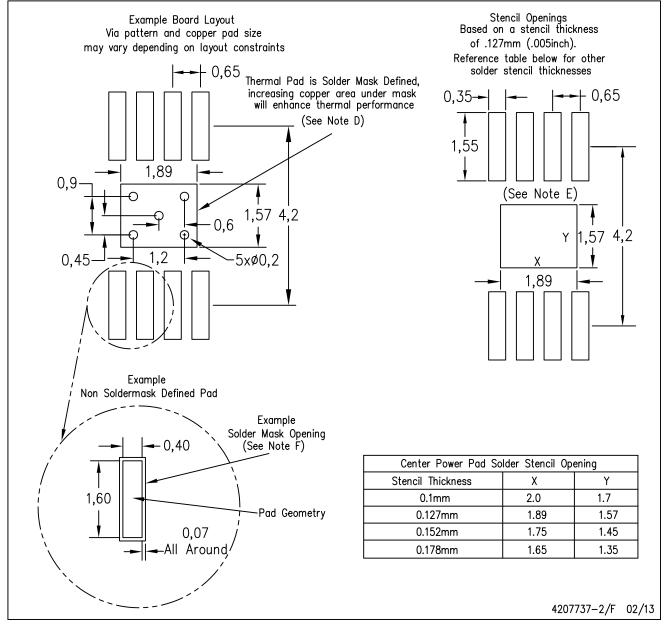
THERMAL INFORMATION

This PowerPAD $^{\text{M}}$ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

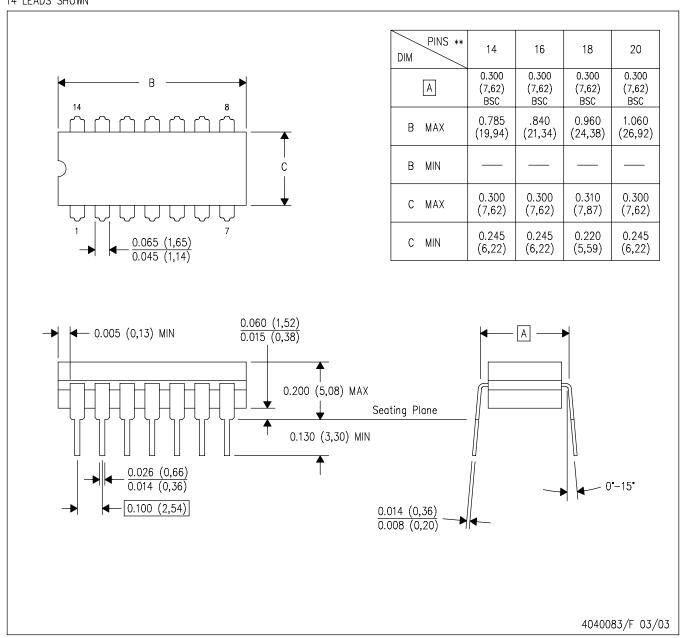
Exposed Thermal Pad Dimensions


4206323-2/1 12/11

NOTE: All linear dimensions are in millimeters

DGN (R-PDSO-G8)

PowerPAD™ PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.