

Sample &

Buv

SN74AUP1T34-Q1

SCES852A - DECEMBER 2013 - REVISED APRIL 2016

SN74AUP1T34-Q1 1-Bit Unidirectional Voltage-Level Translator

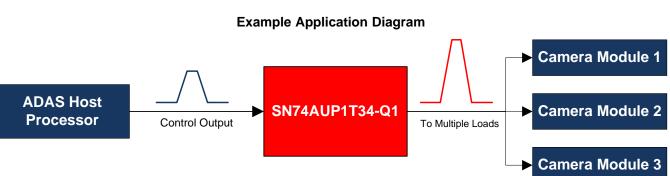
1 Features

- Qualified for Automotive Applications
 - AEC-Q100 Qualified
 - Device Temperature Grade 1: -40°C to 125°C Ambient Operating Temperature
 - Device HBM ESD Classification Level 3A
 - Device CDM ESD Classification Level C5
- Wide Operating VCC Range of 0.9 V to 3.6 V
- Balanced Propagation Delays: t_{PLH} = t_{PHL} (1.8-V to 3.3-V Translation Typical)
- Low Static-Power Consumption: Maximum of 5-µA ICC
- ±6-mA Output Drive at 3 V
- Ioff Supports Partial Power-Down-Mode Operation
- VCC Isolation Feature If V_{CCA} Input Is at GND, B Port Is in the High-Impedance state
- Input Hysteresis Allows Slow Input Transition and Better Switching Noise Immunity at Input
- ESD Protection Exceeds JESD 22
- 5000-V Human-Body Model (AEC-Q100-002-E)
- Latch-Up Performance Meets
 100 mA Per Q100-004-D

2 Applications

- Automotive
- Enterprise
- Industrial
- Personal Electronics
- Telecommunications

3 Description


The SN74AUP1T34-Q1 device is a 1-bit noninverting translator that uses two separate configurable powersupply rails. It is a unidirectional translator from A to B. The A port is designed to track V_{CCA} . V_{CCA} accepts supply voltages from 0.9 V to 3.6 V. The B port is designed to track V_{CCB} . V_{CCB} accepts supply voltages from 0.9 V to 3.6 V. The B port is designed to track V_{CCB} . V_{CCB} accepts supply voltages from 0.9 V to 3.6 V. The B port is allows for low-voltage translation between 1-V, 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes. The SN74AUP1T34-Q1 is also fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The VCC isolation feature ensures that if V_{CCA} input is at GND, the B port is in the high-impedance state. If V_{CCB} input is at GND, any input to the A side does not cause the leakage current even floating.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)						
SN74AUP1T34-Q1	SC70 (5)	2.00 mm × 1.25 mm						

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Copyright © 2016, Texas Instruments Incorporated

Features 1

Applications 1

Description 1

Revision History..... 2

Pin Configuration and Functions...... 3

6.1 Absolute Maximum Ratings 3

6.6 Typical Characteristics 6

Detailed Description7

8.2 Functional Block Diagram 7

ESD Ratings...... 3

Recommended Operating Conditions 4

Thermal Information 4

2

Table of Contents

	8.3 Feature Description7
	8.4 Device Functional Modes7
9	Application and Implementation8
	9.1 Application Information
	9.2 Typical Application8
10	Power Supply Recommendations
11	Layout 10
	11.1 Layout Guidelines 10
	11.2 Layout Example 10
12	Device and Documentation Support 11
	12.1 Community Resources 11
	12.2 Trademarks 11
	12.3 Electrostatic Discharge Caution 11
	12.4 Glossary 11
13	Mechanical, Packaging, and Orderable
	Information 11

. ..

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (December 2013) to Revision A

Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation	
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and	
Mechanical, Packaging, and Orderable Information section.	1
Removed Ordering Information table	1

www.ti.com

1

2

3

4

5

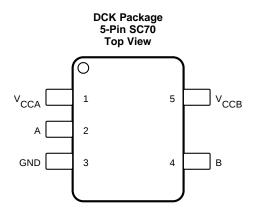
6

7

8

6.2

6.3


6.4

Page

SN74AUP1T34-Q1 SCES852A – DECEMBER 2013 – REVISED APRIL 2016

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION		
NAME	NO.	I/O	DESCRIPTION		
А	2	I	Input Port. Referenced to V _{CCA} .		
В	4	0	Output Port. Referenced to V _{CCB.}		
GND	3	—	Ground.		
V _{CCA}	1		Input Port DC Power Supply.		
V _{CCB}	5	—	Output Port DC Power Supply.		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT		
V _{CCA} , V _{CCB}	Supply voltage	upply voltage					
VI	Input voltage	-0.5	4.6	V			
V	Voltage applied to any outp	-0.5	4.6	V			
Vo	Voltage applied to any output in the high or low state			4.6	v		
I _{IK}	Input clamp current	V ₁ < 0		-50	mA		
I _{OK}	Output clamp current	V ₀ < 0		-50	mA		
I _O	Continuous output current			±50	mA		
	Continuous current through		±100	mA			
T _{stg}	Storage temperature		-65	150	°C		

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ , Classification 3A	5000	
$V_{(ESD)}$	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ , Classification C5	750	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

SCES852A - DECEMBER 2013-REVISED APRIL 2016

www.ti.com

STRUMENTS

ÈXAS

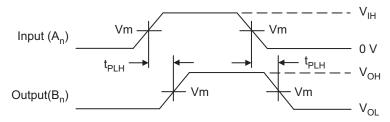
6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	VCCA	VCCB	MIN	MAX	UNIT
V _{CCA} , V _{CCB}	Supply voltage				0.9	3.6	V
			0.9 V to 1.95 V	0.9 V to 1.95 V	0.65 × V _{CCA}		
VIH	High-level input voltage		2.3 V to 2.7 V	0.9 V to 3.6 V	1.6		V
			3 V to 3.6 V	0.9 V to 3.6 V	2		
			0.9 V	0.9 V to 1.95 V		$0.3 \times V_{CCA}$	
.,			1 V to 1.95 V	0.9 V to 1.95 V		$0.35 \times V_{CCA}$	V
VIL	Low-level input voltage		2.3 V to 2.7 V	0.9 V to 3.6 V		0.7	V
			3 V to 3.6 V	0.9 V to 3.6 V		0.9	
Δt/Δv	Input transition rise or fall rate		3 V to 3.6 V	0.9 V to 3.6 V		200	ns/V
T _A	Operating free-air temperature				-40	125	°C
		I _{OH} = -100 μA	0.9 V to 3.6 V	0.9 V to 3.6 V	VCCB - 0.2		
		I _{OH} = -0.25 mA	0.9 V to 1 V	0.9 V to 1 V	0.75 × VCCB		
		I _{OH} = -1.5 mA	1.2 V	1.2 V	1		
V _{OH}		$V_{I} = V_{IH}$ $V_{I} = V_{IH}$	1.65 V	1.65 V	1.32		V
		$I_{OH} = -3 \text{ mA}$	2.3 V	2.3 V	1.9		
		$I_{OH} = -6 \text{ mA}$	3 V	3 V	2.72		
		I _{OL} = 100 μA	0.9 V to 3.6 V	0.9 V to 3.6 V		0.1	
		I _{OL} = 0.25 mA	0.9 V to 1 V	0.9 V 1 V		0.1	
		I _{OL} = 1.5 mA	1.2 V	1.2 V		0.3 × VCCB	.,
V _{OL}		$V_{l} = V_{lL}$	1.65 V	1.65 V		0.31	V
		I _{OL} = 3 mA	2.3 V	2.3 V		0.31	
		I _{OL} = 6 mA	3 V	3 V		0.31	
l,	Control inputs	V _I = VCCA or GND	0.9 V to 3.6 V	0.9 V to 3.6 V		±1	μA
	A as D sort		0 V	0 V to 3.6 V		±5	
l _{off}	A or B port	VI or VO = 0 to 3.6 V	0 V to 3.6 V	0 V		±5	μA
			0.9 V to 3.6 V	0.9 V to 3.6 V		2.7	
		VI = VCCI or GND, IO = 0 mA	0.9 V to 3.6 V	VCCA		2	
I _{CCA}		VI = VCCI OI GND, IO = 0 IIIA	0 V	0 V to 3.6 V		1	μA
			0 V to 3.6 V	0 V		1	
			0.9 V to 3.6 V	0.9 V to 3.6 V		2.7	
			0.9 V to 3.6 V	VCCA		2	
I _{CCB}		VI = VCCI or GND, IO = 0 mA	0 V	0 V to 3.6 V		1	μA
			0 V to 3.6 V	0 V		1	
I _{CCA} + I _C	СВ	VI = VCCI or GND, IO = 0 mA	0.9 V to 3.6 V	0.9 V to 3.6 V		5.4	μA
Cio	A or B port		3.3 V	3.3 V		4	pF

6.4 Thermal Information

		SN74AUP1T34-Q1	
	THERMAL METRIC ⁽¹⁾	DCK (SC70)	UNIT
		5 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	301.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	113	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	79.1	°C/W
ΨJT	Junction-to-top characterization parameter	3.9	°C/W
Ψјв	Junction-to-board characterization parameter	78.3	°C/W


(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 AC Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

DADAMETED	^	VCCA	VCCB = 0).9 V	VCCB = 1	2 V	VCCB = 1.	65 V	VCCB = 2	2.3 V	VCCB =	= 3 V	
PARAMETER	CL	VCCA	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNIT
	5 pF	0.9 V	25		18		16.2		16.3		16.8		
	5 pF	1.2 V		42.5		24.9		23.2		22.6		22.5	
t _{PLH} /t _{PHL}	5 pF	1.65 V		40		10.7		8.84		8.08		7.88	ns
	5 pF	2.3 V		41.3		8.02		5.73		4.92		4.2	
	5 pF	3 V		42.5		7.61		4.5		3.65		3.39	
	10 pF	0.9 V	28.9		19.8		17.9		18		18.5		
	10 pF	1.2 V		43.22		12.33		9.57		8.81		8.61	
t _{PLH} /t _{PHL}	10 pF	1.65 V		40.44		9.21		6.57		5.6		4.73	ns
	10 pF	2.3 V		41.56		8.3		5.54		4.42		4.07	
	10 pF	3 V		42.81		7.87		4.8		3.8		3.36	
	15 pF	0.9 V	30.6		21.6		19.6		19.7		20.3		
	15 pF	1.2 V		43.87		16.2		11.8		11		11	
t _{PLH} /t _{PHL}	15 pF	1.65 V		40.78		14.7		8.8		7.1		6.4	ns
	15 pF	2.3 V		41.79		14.9		7.6		5.88		5.27	
	15 pF	3 V		43.09		16.2		6.98		5.4		4.7	
	30 pF	0.9 V	32.1		21.3		18.7		18		18.3		
	30 pF	1.2 V		45.65		15.1		12.37		11.61		11.41	
t _{PLH} /t _{PHL}	30 pF	1.65 V		41.72		12.18		8.15		6.94		6.1	ns
	30 pF	2.3 V		42.44		12.35		7.25		5.55		4.97	
	30 pF	3 V		43.69		11.6		6.92		4.95		4.35	

 $V_{MI} = V_{IH}/2$; $V_{MO} = V_{CCB}/2$

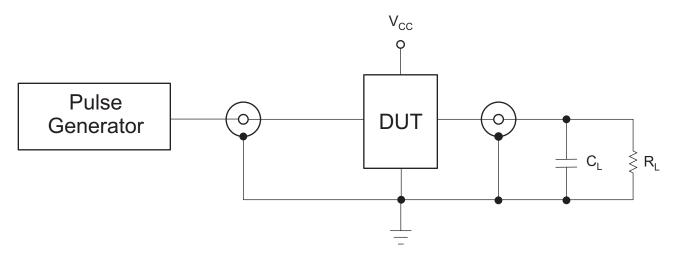
 t_R = t_F = 2.0 ns, 10% to 90%; f = 1 MHz; t_W = 500 ns

Figure 1. Waveform 1 - Propagation Delays

SN74AUP1T34-Q1

SCES852A - DECEMBER 2013-REVISED APRIL 2016

6.6 Typical Characteristics


TEXAS INSTRUMENTS

www.ti.com

0.600 0.500 Low Level Output Voltage [V] 0.400 0.300 0.200 VCCB = 1.0V VCCB = 1.2VVCCB = 1.5V 0.100 VCCB = 1.8V - VCCB = 2.5V - VCCB = 3.3V 0.000 5.00 10.00 20.00 30.00 0.00 15.00 25.00 Low Level Output Current [mA] with VIL = 0V

Figure 2. Low Level Output Voltage vs Low Level Output Current

7 Parameter Measurement Information

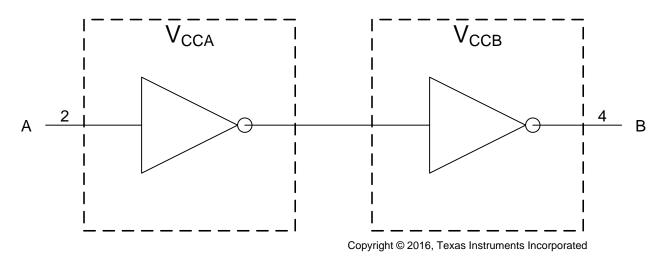
TEST

t_{PLH}, t_{PHL}

 C_L = 5 pF, 10 pF, 15 pF, 30 pF or equivalent (includes probe and jig capacitance) R_L = 1 M Ω or equivalent Z_{OUT} of pulse generator = 50 Ω

Figure 3. AC (Propagation Delay) Test Circuit

Copyright © 2013-2016, Texas Instruments Incorporated


SN74AUP1T34-Q1 SCES852A – DECEMBER 2013–REVISED APRIL 2016

8 Detailed Description

8.1 Overview

The SN74AUP1T34-Q1 is a unidirectional, single-bit, dual-supply, noninverting voltage-level translator. Pin A, which is referenced to V_{CCA} , receives the signal that is to be level translated. Pin B, which is referenced to V_{CCB} , transmits the level translated signal. Both supply pins V_{CCA} and V_{CCB} support a voltage range from 0.9 V to 3.6 V.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Fully Configurable Dual-Rail Design

Both V_{CCA} and V_{CCB} can be supplied at any voltage from 0.9 V to 3.6 V, making the device suitable for translating between any of the voltage nodes (1 V, 1.2 V, 1.8 V, 2.5 V, and 3.3 V).

8.3.2 Partial-Power-Down Mode Operation

I_{off} circuitry disables the outputs, preventing damaging current backflow through the SN74AUP1T34-Q1 when it is powered down. This can occur in applications where subsections of a system are powered down (partial-powerdown) to reduce power consumption.

8.3.3 V_{CC} Isolation

The V_{CC} isolation feature ensures that if either V_{CCA} or V_{CCB} are at GND (or < 0.4 V), both ports A and B are set to a high-impedance state, preventing false logic levels from being presented to either bus.

8.3.4 Input Hysteresis

Input hysteresis allows the input to support slew rates as slow as 200 ns/V, improving switching noise immunity.

8.4 Device Functional Modes

Table 1 lists the functional modes of the SN74AUP1T34-Q1.

INPUT	OUTPUT
A PORT	B PORT
L	L
Н	Н

Table 1. Function Table

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74AUP1T34-Q1 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another.

9.2 Typical Application

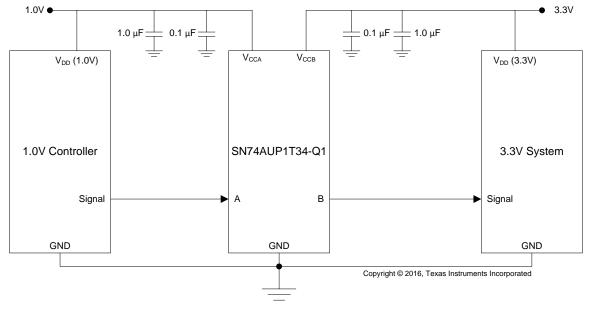


Figure 4. Typical Application Example

9.2.1 Design Requirements

Table 2 lists the design requirements of the SN74AUP1T34-Q1.

DESIGN PARAMETER	EXAMPLE VALUE
Input Voltage Range	0.9 V to 3.6 V
Output Voltage Range	0.9 V to 3.6 V

9.2.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
 - Use the supply voltage of the device that is driving the SN74AUP1T34-Q1 device to determine the input voltage range. For a valid logic-high, the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74AUP1T34-Q1 device is driving to determine the output voltage range.

9.2.3 Application Curve

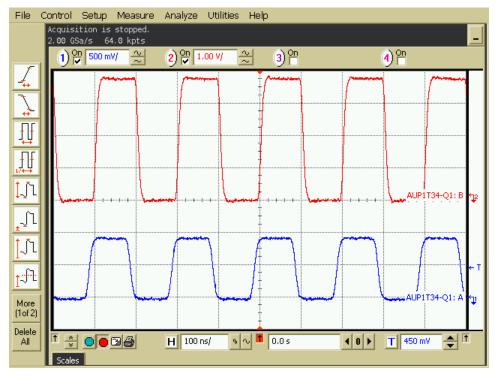
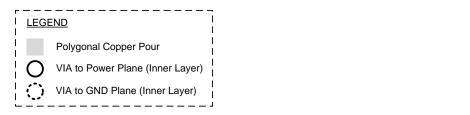
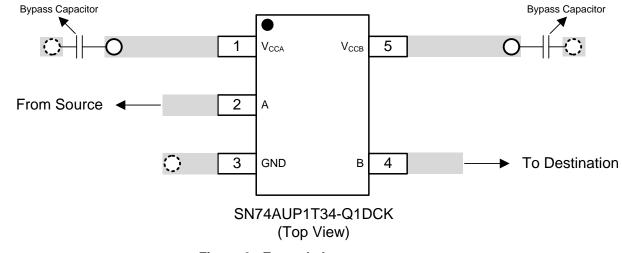


Figure 5. 10 MHz Up Translation (0.9 V to 3.6 V)

10 Power Supply Recommendations

Connect ground before applying either V_{CCA} or V_{CCB}. There is no specific power sequence requirement for the SN74AUP1T34. V_{CCA} or V_{CCB} may be powered up first, and V_{CCA} or V_{CCB} may be powered down first.


11 Layout


11.1 Layout Guidelines

To ensure reliability of the device, TI recommends following common printed-circuit board layout guidelines.

- Bypass capacitors must be used on power supplies.
- Short trace lengths must be used to avoid excessive loading.
- Placing pads on the signal paths for loading capacitors or pullup resistors helps adjust rise and fall times of signals depending on the system requirements.

11.2 Layout Example

Copyright © 2013-2016, Texas Instruments Incorporated

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

2-Feb-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74AUP1T34QDCKRQ1	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	U4E	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

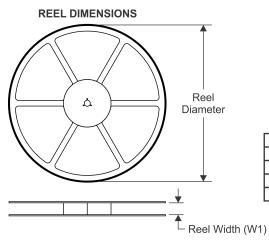
PACKAGE OPTION ADDENDUM

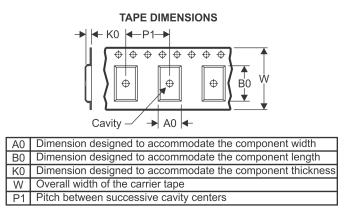
2-Feb-2016

OTHER QUALIFIED VERSIONS OF SN74AUP1T34-Q1 :

• Catalog: SN74AUP1T34

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product


PACKAGE MATERIALS INFORMATION

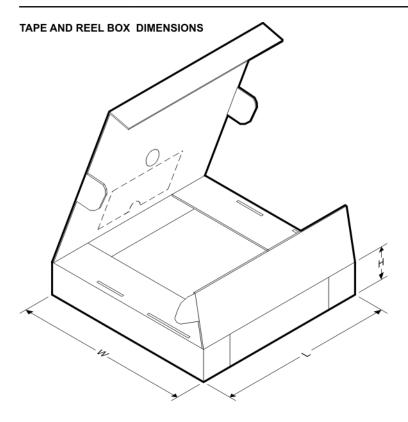
www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal					
Device	Package	Package	Pins	SPQ	

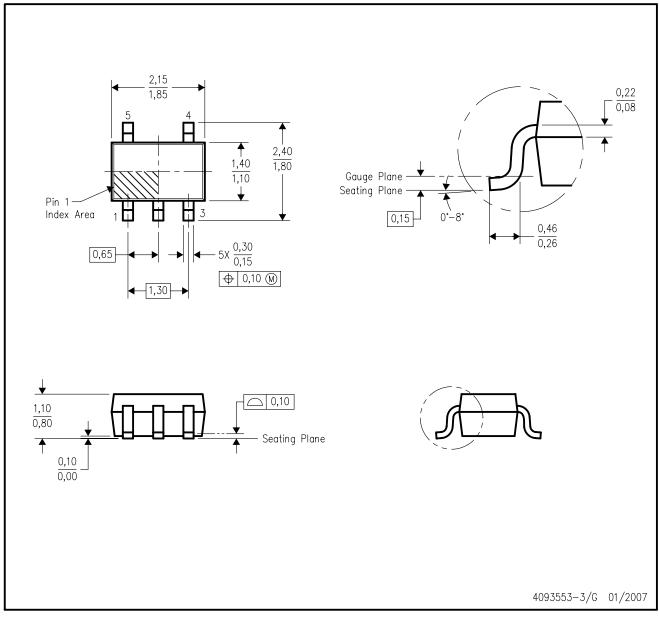

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP1T34QDCKRQ1	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

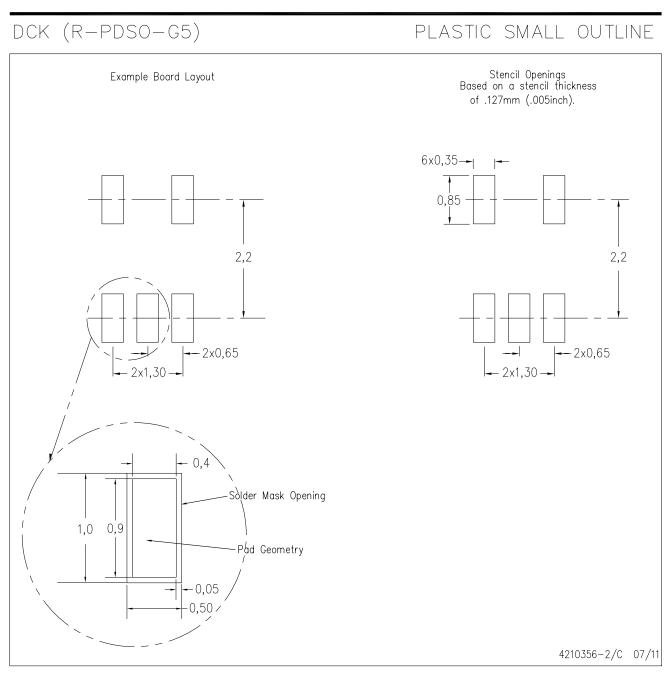
2-Feb-2016



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP1T34QDCKRQ1	SC70	DCK	5	3000	180.0	180.0	18.0

DCK (R-PDSO-G5)


PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AA.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated