

TPS74701

SBVS099G - NOVEMBER 2007-REVISED OCTOBER 2015

TPS74701 500-mA Low-Dropout Linear Regulator With Programmable Soft-Start

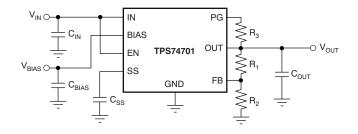
Features

V_{OUT} Range: 0.8 V to 3.6 V

Ultralow V_{IN} Range: 0.8 V to 5.5 V

V_{BIAS} Range 2.7 V to 5.5 V

Low Dropout: 50 mV Typically at 500 mA, V_{BIAS} =


Power Good (PG) Output Allows Supply Monitoring or Provides a Sequencing Signal for Other Supplies

- 2% Accuracy Over Line, Load, and Temperature
- Programmable Soft-Start Provides Linear Voltage Start-Up
- V_{BIAS} Permits Low V_{IN} Operation With Good Transient Response
- Stable With Any Output Capacitor ≥ 2.2 µF
- Available in a Small 3-mm x 3-mm x 1-mm 10-Pin Package

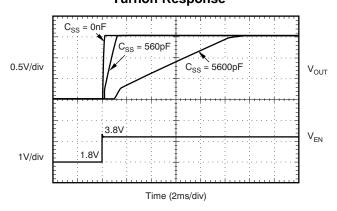
Applications

- **FPGA Applications**
- DSP Core and I/O Voltages
- Post-Regulation Applications
- Applications With Special Start-Up Time or Sequencing Requirements
- Hot-Swap and Inrush Controls

Typical Application Circuit (Adjustable)

3 Description

The TPS74701 low-dropout (LDO) linear regulator provides an easy-to-use, robust power management solution for a wide variety of applications. Userprogrammable soft-start minimizes stress on the input power source by reducing capacitive inrush current on start-up. The soft-start is monotonic and wellsuited for powering many different types of processors and ASICs. The enable input and power good output allow easy sequencing with external regulators. This complete flexibility permits the user to configure a solution that meets the sequencing requirements of FPGAs, DSPs, applications with special start-up requirements.


A precision reference and error amplifier deliver 2% accuracy over load, line, temperature, and process. The device is stable with any type of capacitor greater than or equal to 2.2 µF, and is fully specified from -40°C to 125°C. The TPS74701 is offered in a small 3-mm × 3-mm SON-10 package compatibility with the TPS74801.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS74701	VSON (10)	3.00 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Turnon Response

Table of Contents

1	Features 1	8 Application and Implementation 1
2	Applications 1	8.1 Application Information 1
3	Description 1	8.2 Typical Application 1
4	Revision History2	9 Power Supply Recommendations 1
5	Pin Configuration and Functions	10 Layout 1
6	Specifications4	10.1 Layout Guidelines 1
•	6.1 Absolute Maximum Ratings	10.2 Layout Example 1
	6.2 ESD Ratings	10.3 Power Dissipation 1
	6.3 Recommended Operating Conditions	10.4 Estimating Junction Temperature
	6.4 Thermal Information	11 Device and Documentation Support 2
	6.5 Electrical Characteristics	11.1 Device Support2
	6.6 Typical Characteristics: V _{EN} = V _{IN}	11.2 Documentation Support
	6.7 Typical Characteristics: $V_{EN} = V_{IN} = 1.8 \text{ V}, V_{OUT} =$	11.3 Community Resources 2
	1.5 V 10	11.4 Trademarks2
7	Detailed Description 11	11.5 Electrostatic Discharge Caution
	7.1 Overview 11	11.6 Glossary
	7.2 Functional Block Diagram 11	12 Mechanical, Packaging, and Orderable
	7.3 Feature Description	Information 2
	7.4 Device Functional Modes	

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision F (November 2010) to Revision G

Page

Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

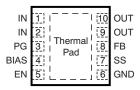
Changes from Revision E (August, 2010) to Revision F

Page

Changes from Revision D (April, 2009) to Revision E

Page

- Revised *Power Dissipation* section
 Deleted (previously numbers) Figure 28 through Figure 30


Submit Documentation Feedback

Copyright © 2007–2015, Texas Instruments Incorporated

5 Pin Configuration and Functions

DRC Package 10-Pin SON Top View

Pin Functions

Р	IN	1/0	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
IN	1, 2	I	Input to the device.	
EN	5	I	Enable pin. Driving this pin high enables the regulator. Driving this pin low puts the regulator into shutdown mode. This pin must not be left unconnected.	
SS	7	_	Soft-Start pin. A capacitor connected on this pin to ground sets the start-up time. If this pin is left unconnected, the regulator output soft-start ramp time is typically 200 μ s.	
BIAS	4	I	Bias input voltage for error amplifier, reference, and internal control circuits.	
PG	3	0	Power Good pin. An open-drain, active-high output that indicates the status of V_{OUT} . When V_{OUT} exceeds the PG trip threshold, the PG pin goes into a high-impedance state. When V_{OUT} is below this threshold the pin is driven to a low-impedance state. A pullup resistor from 10 k Ω to 1 M Ω should be connected from this pin to a supply of up to 5.5 V. The supply can be higher than the input voltage. Alternatively, the PG pin can be left unconnected if output monitoring is not necessary.	
FB	8	1	Feedback pin. The feedback connection to the center tap of an external resistor divider network that sets the output voltage. This pin must not be left floating.	
OUT	9, 10	0	Regulated output voltage. A small capacitor (total typical capacitance \geq 2.2 μ F, ceramic) is needed from this pin to ground to assure stability.	
NC	N/A	I	No connection. This pin can be left floating or connected to GND to allow better thermal contact to the top-side plane.	
GND	6	1	Ground	
Thermal Pad	_	I	Should be soldered to the ground plane for increased thermal performance.	

6 Specifications

6.1 Absolute Maximum Ratings

At $T_1 = -40^{\circ}$ C to 125°C, unless otherwise noted. All voltages are with respect to GND.⁽¹⁾

		MIN	MAX	UNIT
V _{IN} , V _{BIAS}	Input voltage	-0.3	6	V
V _{EN}	Enable voltage	-0.3	6	V
V_{PG}	Power good voltage	-0.3	6	V
I _{PG}	PG sink current	0	1.5	mA
V _{SS}	Soft-start voltage	-0.3	6	V
V _{FB}	Feedback voltage	-0.3	6	V
V _{OUT}	Output voltage	-0.3	V _{IN} + 0.3	V
I _{OUT}	Maximum output current	Internal	ly limited	
	Output short-circuit duration	Inde	efinite	
P _{DISS}	Continuous total power dissipation	See Therma	al Information	
T_J	Operating junction temperature	-40	125	°C
T _{stg}	Storage temperature	-55	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	±500	V

¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{IN}	Input supply voltage	$V_{OUT} + V_{DO} (V_{IN})$	V _{OUT} + 0.3	5.5	V
V_{EN}	Enable supply voltage	0	V_{IN}	5.5	V
V _{BIAS} ⁽¹⁾	BIAS supply voltage	$V_{OUT} + V_{DO} (V_{BIAS})^{(2)}$	V _{OUT} + 1.4 ⁽²⁾	5.5	V
V _{OUT}	Output voltage	0.8		3.3	V
I _{OUT}	Output current	0		500	mA
C _{OUT}	Output capacitor	2.2			μF
C _{IN}	Input capacitor (3)	1			μF
C _{BIAS}	Bias capacitor	0.1	1		μF
T_{J}	Operating junction temperature	-40	·	125	°C

⁽¹⁾ BIAS supply is required when V_{IN} is below V_{OUT} + 1.62 V.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ V_{BIAS} has a minimum voltage of 2.7 V or V_{OUT} + V_{DO} (V_{BIAS}), whichever is higher.

⁽³⁾ If V_{IN} and V_{BIAS} are connected to the same supply, the recommended minimum capacitor for the supply is 4.7 μ F.

6.4 Thermal Information

	(1)(0)	TPS74701	
	THERMAL METRIC ⁽¹⁾⁽²⁾	DRC (VSON)(3)	UNIT
		10 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	41.5	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	78	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	N/A	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.7	°C/W
ΨЈВ	Junction-to-board characterization parameter	11.3	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	6.6	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.

Thermal data for the DRC package are derived by thermal simulations based on JEDEC-standard methodology as specified in the JESD51 series. The following assumptions are used in the simulations:

(a) The exposed pad is connected to the PCB ground layer through a 3x2 thermal via array.

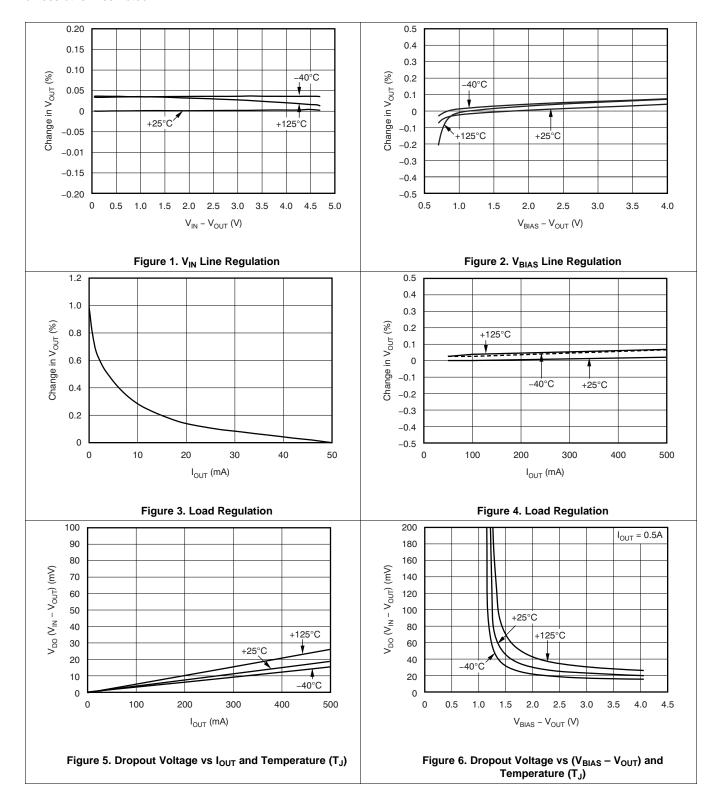
⁽b) The top and bottom copper layers are assumed to have a 20% thermal conductivity of copper representing a 20% copper coverage.

⁽c) This data were generated with only a single device at the center of a JEDEC high-K (2s2p) board with 3-inches x 3-inches copper area. To understand the effects of the copper area on thermal performance, see the Power Dissipation and Estimating Junction Temperature sections.

6.5 Electrical Characteristics

At V_{EN} = 1.1 V, V_{IN} = V_{OUT} + 0.3V, C_{BIAS} = 0.1 μ F, C_{IN} = C_{OUT} = 10 μ F, C_{NR} = 1 nF, I_{OUT} = 50 mA, V_{BIAS} = 5 V, and T_J = -40° C to 125°C, unless otherwise noted. Typical values are at T_J = 25°C.

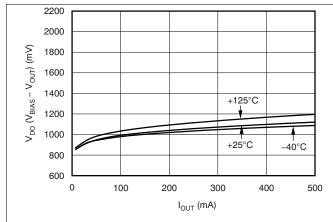
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	Input voltage range		V _{OUT} + V _{DO}		5.5	V
V _{BIAS}	Bias pin voltage range		2.7		5.5	V
V_{REF}	Internal reference (Adjustable)	T _J = 25°C	0.796	0.8	0.804	V
	Output voltage range	V _{IN} = 5 V, I _{OUT} = 500 mA	V_{REF}		3.6	V
V _{OUT}	Accuracy ⁽¹⁾	$2.97 \text{ V} \le \text{V}_{\text{BIAS}} \le 5.5 \text{ V},$ 50 mA $\le \text{I}_{\text{OUT}} \le 500 \text{ mA}$	-2%	±0.5%	2%	
V _{OUT} /V _{IN}	Line regulation	$V_{OUT\ (NOM)} + 0.3 \le V_{IN} \le 5.5 \text{ V}$		0.03		%/V
V _{OUT} /I _{OUT}	Load regulation	50 mA ≤ I _{OUT} ≤ 500 mA		0.09		%/A
V_{DO}	V _{IN} dropout voltage ⁽²⁾	$I_{OUT} = 500 \text{ mA},$ $V_{BIAS} - V_{OUT (NOM)} \ge 1.62 \text{ V}^{(3)}$		50	120	mV
	V _{BIAS} dropout voltage ⁽²⁾	I _{OUT} = 500 mA, V _{IN} = V _{BIAS}		1.31	1.39	V
I _{CL}	Current limit	$V_{OUT} = 80\% \times V_{OUT (NOM)}$	800		1350	mA
I _{BIAS}	Bias pin current			1	2	mA
I _{SHDN}	Shutdown supply current (I _{GND})	V _{EN} ≤ 0.4 V		1	50	μΑ
I _{FB}	Feedback pin current		-1	0.150	1	μΑ
	Power-supply rejection (V _{IN} to V _{OUT})	1 kHz, I _{OUT} = 500 mA, V _{IN} = 1.8 V, V _{OUT} = 1.5 V		60		dB
PSRR		300 kHz, I _{OUT} = 500 mA, V _{IN} = 1.8 V, V _{OUT} = 1.5 V		30		QD
FORK	Power-supply rejection	1 kHz, I _{OUT} = 500 mA, V _{IN} = 1.8 V, V _{OUT} = 1.5 V		50		dB
	(V _{BIAS} to V _{OUT})	300 kHz, I _{OUT} = 500 mA, V _{IN} = 1.8 V, V _{OUT} = 1.5 V		30		иь
Noise	Output noise voltage	$I_{OUT} = 500 \text{ mA}, C_{SS} = 0.001 \mu\text{F}$	25 × V _{OUT}			μV_{RMS}
t _{STR}	Minimum start-up time	R _{LOAD} for I _{OUT} = 1 A, C _{SS} = open		200		μs
I _{SS}	Soft-start charging current	V _{SS} = 0.4 V		440		nA
V _{EN, HI}	Enable input high level		1.1		5.5	V
V _{EN, LO}	Enable input low level		0		0.4	V
V _{EN, HYS}	Enable pin hysteresis			50		mV
V _{EN, DG}	Enable pin deglitch time			20		μs
I _{EN}	Enable pin current	V _{EN} = 5 V		0.1	1	μΑ
V _{IT}	PG trip threshold	V _{OUT} decreasing	85	90	94	%V _{OUT}
V _{HYS}	PG trip hysteresis			3		%V _{OUT}
V _{PG, LO}	PG output low voltage	I _{PG} = 1 mA (sinking), V _{OUT} < V _{IT}			0.3	V
I _{PG, LKG}	PG leakage current	V _{PG} = 5.25 V, V _{OUT} > V _{IT}		0.1	1	μΑ
TJ	Operating junction temperature		-40		125	°C
-	Thermal shutdown	Shutdown, temperature increasing		165		60
T_{SD}	temperature	Reset, temperature decreasing		140		°C


⁽¹⁾ Adjustable devices tested at 0.8 V; resistor tolerance is not taken into account.

 ⁽²⁾ Dropout is defined as the voltage from V_{IN} to V_{OUT} when V_{OUT} is 3% less than nominal.
 (3) 1.62 V is a test condition of this device and can be adjusted by referring to Figure 6.

6.6 Typical Characteristics: $V_{EN} = V_{IN}$

At T_J = 25°C, V_{IN} = $V_{OUT(TYP)}$ + 0.3 V, V_{BIAS} = 5 V, I_{OUT} = 50 mA, V_{EN} = V_{IN} , C_{IN} = 1 μ F, C_{BIAS} = 4.7 μ F, and C_{OUT} = 10 μ F, unless otherwise noted.


Copyright © 2007–2015, Texas Instruments Incorporated

Submit Documentation Feedback

TEXAS INSTRUMENTS

Typical Characteristics: $V_{EN} = V_{IN}$ (continued)

At T_J = 25°C, V_{IN} = $V_{OUT(TYP)}$ + 0.3 V, V_{BIAS} = 5 V, I_{OUT} = 50 mA, V_{EN} = V_{IN} , C_{IN} = 1 μ F, C_{BIAS} = 4.7 μ F, and C_{OUT} = 10 μ F, unless otherwise noted.

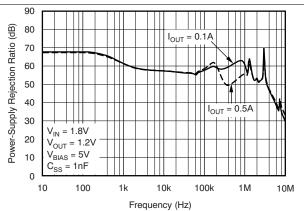
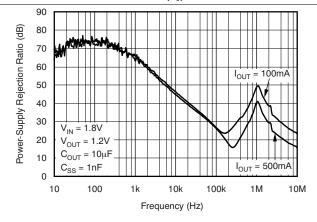



Figure 7. V_{BIAS} Dropout Voltage vs I_{OUT} and Temperature (T_J)

Figure 8. V_{BIAS} PSRR vs Frequency

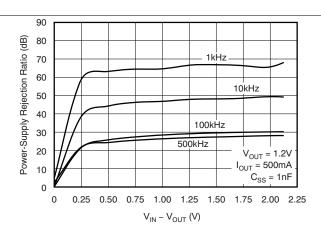
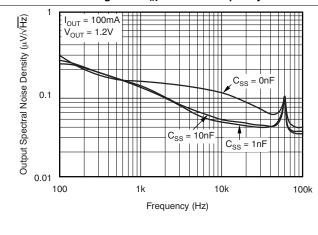



Figure 9. V_{IN} PSRR vs Frequency

Figure 10. V_{IN} PSRR vs (V_{IN} – V_{OUT})

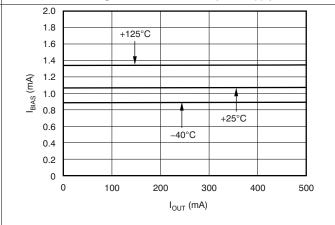
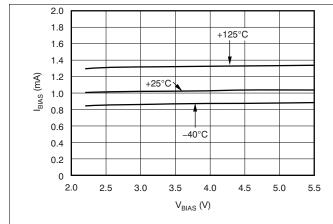


Figure 11. Noise Spectral Density

Figure 12. BIAS Pin Current vs I_{OUT} and Temperature (T_J)


Submit Documentation Feedback

Copyright © 2007–2015, Texas Instruments Incorporated

Typical Characteristics: $V_{EN} = V_{IN}$ (continued)

At T_J = 25°C, V_{IN} = V_{OUT(TYP)} + 0.3 V, V_{BIAS} = 5 V, I_{OUT} = 50 mA, V_{EN} = V_{IN}, C_{IN} = 1 μ F, C_{BIAS} = 4.7 μ F, and C_{OUT} = 10 μ F, unless otherwise noted.

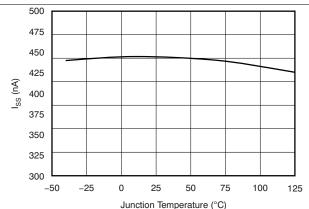
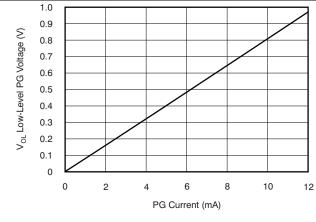



Figure 13. BIAS Pin Current vs V_{BIAS} and Temperature (T_{J})

Figure 14. Soft-Start Charging Current (I_{SS}) vs Temperature

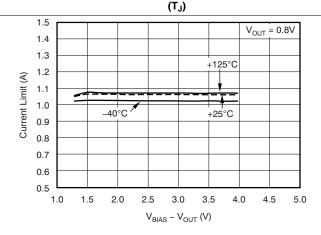
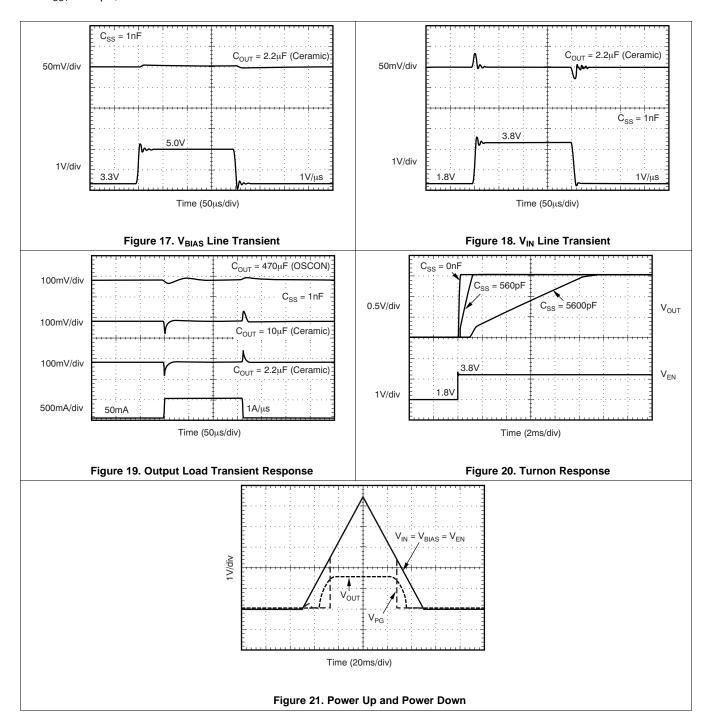



Figure 16. Current Limit vs ($V_{BIAS} - V_{OUT}$)

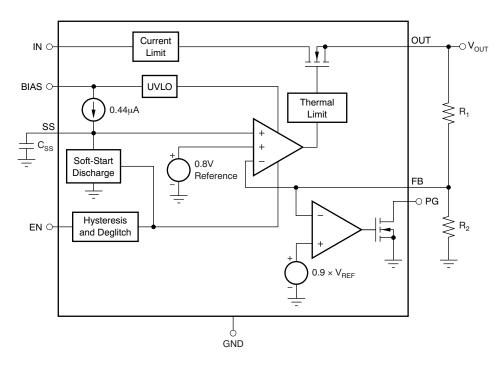
6.7 Typical Characteristics: $V_{EN} = V_{IN} = 1.8 \text{ V}, V_{OUT} = 1.5 \text{ V}$

At $T_J = 25^{\circ}C$, $V_{IN} = V_{OUT(TYP)} + 0.3$ V, $V_{BIAS} = 5$ V, $I_{OUT} = 50$ mA, $V_{EN} = V_{IN} = 1.8$ V, $V_{OUT} = 1.5$ V, $C_{IN} = 1$ μ F, $C_{BIAS} = 4.7$ μ F, and $C_{OUT} = 10$ μ F, unless otherwise noted.

Submit Documentation Feedback

Copyright © 2007–2015, Texas Instruments Incorporated

7 Detailed Description


7.1 Overview

The TPS74701 belongs to a family of low-dropout regulators that feature soft-start capability. These regulators use a low current bias input to power all internal control circuitry, allowing the NMOS pass transistor to regulate very low input and output voltages.

The use of an NMOS-pass FET offers several critical advantages for many applications. Unlike a PMOS topology device, the output capacitor has little effect on loop stability. This architecture allows the TPS74701 to be stable with any capacitor type of value 2.2 μ F or greater. Transient response is also superior to PMOS topologies, particularly for low V_{IN} applications.

The TPS74701 features a programmable voltage-controlled soft-start circuit that provides a smooth, monotonic start-up and limits start-up inrush currents that may be caused by large capacitive loads. A power good (PG) output is available to allow supply monitoring and sequencing of other supplies. An enable (EN) pin with hysteresis and deglitch allows slow-ramping signals to be used for sequencing the device. The low VIN and VOUT capability allows for inexpensive, easy-to-design, and efficient linear regulation between the multiple supply voltages often present in processor-intensive systems.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Programmable Soft-Start

The TPS74701 features a programmable, monotonic, voltage-controlled soft-start that is set with an external capacitor (C_{SS}). This feature is important for many applications because it eliminates power-up initialization problems when powering FPGAs, DSPs, or other processors. The controlled voltage ramp of the output also reduces peak inrush current during start-up, minimizing start-up transient events to the input power bus.

To achieve a linear and monotonic soft-start, the TPS74701 error amplifier tracks the voltage ramp of the external soft-start capacitor until the voltage exceeds the internal reference. The soft-start ramp time depends on the soft-start charging current (I_{SS}), soft-start capacitance (C_{SS}), and the internal reference voltage (V_{REF}), and can be calculated using Equation 1:

Feature Description (continued)

$$t_{SS} = \frac{(V_{REF} \times C_{SS})}{I_{SS}} \tag{1}$$

If large output capacitors are used, the device current limit (I_{CL}) and the output capacitor may set the start-up time. In this case, the start-up time is given by Equation 2:

$$t_{SSCL} = \frac{(V_{OUT(NOM)} \times C_{OUT})}{I_{CL(MIN)}}$$

where

- V_{OUT(NOM)} is the nominal output voltage
- C_{OUT} is the output capacitance
- I_{CL(MIN)} is the minimum current limit for the device

(2)

In applications where monotonic start-up is required, the soft-start time given by Equation 1 should be set greater than Equation 2.

The maximum recommended soft-start capacitor is $0.015~\mu F$. Larger soft-start capacitors can be used, and they do not damage the device; however, the soft-start capacitor discharge circuit may not be able to fully discharge the soft-start capacitor when enabled.

Soft-start capacitors larger than 0.015 μF could be a problem in applications where it is necessary to rapidly pulse the enable pin and still require the device to soft-start from ground. C_{SS} must be low-leakage; X7R, X5R, or C0G dielectric materials are preferred. See Table 3 for suggested soft-start capacitor values.

7.3.2 Enable and Shutdown

The enable (EN) pin is active high and is compatible with standard digital signaling levels. V_{EN} below 0.4 V turns the regulator off, while V_{EN} above 1.1 V turns the regulator on. Unlike many regulators, the enable circuitry has hysteresis and deglitching for use with relatively slowly ramping analog signals. This configuration allows the TPS74701 to be enabled by connecting the output of another supply to the EN pin. The enable circuitry typically has 50 mV of hysteresis and a deglitch circuit to help avoid on-off cycling as a result of small glitches in the V_{EN} signal.

The enable threshold is typically 0.8 V and varies with temperature and process variations. Temperature variation is approximately –1 mV/°C; process variation accounts for most of the rest of the variation to the 0.4-V and 1.1-V limits. If precise turnon timing is required, a fast rise-time signal must be used to enable the TPS74701.

If not used, EN can be connected to either IN or BIAS. If EN is connected to IN, it should be connected as close as possible to the largest capacitance on the input to prevent voltage droops on that line from triggering the enable circuit.

7.3.3 Power Good

The power good (PG) pin is an open-drain output and can be connected to any 5.5 V or lower rail through an external pullup resistor. This pin requires at least 1.1 V on V_{BIAS} to have a valid output. The PG output is high-impedance when V_{OUT} is greater than $V_{IT} + V_{HYS}$. If V_{OUT} drops below V_{IT} or if V_{BIAS} drops below 1.9 V, the open-drain output turns on and pulls the PG output low. The PG pin also asserts when the device is disabled. The recommended operating condition of the PG pin sink current is up to 1 mA, so the pullup resistor for PG should be in the range of 10 k Ω to 1 M Ω . If output voltage monitoring is not needed, the PG pin can be left floating.

7.3.4 Internal Current Limit

The TPS74701 features a factory-trimmed, accurate current limit that is flat over temperature and supply voltage. The current limit allows the device to supply surges of up to 1 A and maintain regulation. The current limit responds in about 10 µs to reduce the current during a short-circuit fault.

The internal current limit protection circuitry of the TPS74701 is designed to protect against overload conditions. It is not intended to allow operation above the rated current of the device. Continuously running the TPS74701 above the rated current degrades device reliability.

Feature Description (continued)

7.3.5 Thermal Shutdown

Thermal protection disables the output when the junction temperature rises to approximately 160°C, allowing the device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is enabled. Depending on power dissipation, thermal resistance, and ambient temperature the thermal protection circuit may cycle on and off. This cycling limits the dissipation of the regulator, protecting it from damage as a result of overheating.

Activation of the thermal protection circuit indicates excessive power dissipation or inadequate heatsinking. For reliable operation, junction temperature should be limited to 125°C maximum. To estimate the margin of safety in a complete design (including heatsink), increase the ambient temperature until thermal protection is triggered; use worst-case loads and signal conditions. For good reliability, thermal protection should trigger at least 40°C above the maximum expected ambient condition of the application. This condition produces a worst-case junction temperature of 125°C at the highest expected ambient temperature and worst-case load.

The internal protection circuitry of the TPS74701 is designed to protect against overload conditions. It is not intended to replace proper heatsinking. Continuously running the TPS74701 into thermal shutdown degrades device reliability.

7.4 Device Functional Modes

7.4.1 Normal Operation

The device regulates to the nominal output voltage under the following conditions:

- The input voltage and bias voltage are both at least at the respective minimum specifications.
- The enable voltage has previously exceeded the enable rising threshold voltage and has not decreased below the enable falling threshold.
- The output current is less than the current limit.
- The device junction temperature is less than the maximum specified junction temperature.

7.4.2 Dropout Operation

If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout mode. In this condition, the output voltage is the same as the input voltage minus the dropout voltage. The transient performance of the device is significantly degraded because the pass device is in a triode state and no longer controls the current through the LDO. Line or load transients in dropout can result in large output voltage deviations.

7.4.3 Disabled

The device is disabled under the following conditions:

- The input or bias voltages are below the respective minimum specifications.
- The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising threshold.
- The device junction temperature is greater than the thermal shutdown temperature.

Table 1 shows the conditions that lead to the different modes of operation.

Table 1. Device Functional Mode Comparison

OPERATING MODE	PARAMETER					
OPERATING MODE	V _{IN}	V _{EN}	V _{BIAS}	I _{OUT}	T _J	
Normal mode	$V_{IN} > V_{OUT(nom)} + V_{DO} (V_{IN})$	$V_{EN} > V_{EN, HI}$	$V_{BIAS} \ge V_{OUT} + 1.39 \text{ V}$	$I_{OUT} < I_{CL}$	T _J < 125°C	
Dropout mode	$V_{IN} < V_{OUT(nom)} + V_{DO} (V_{IN})$	$V_{EN} > V_{EN, HI}$	$V_{BIAS} < V_{OUT} + 1.39 V$	_	T _J < 125°C	
Disabled mode (any true condition disables the device)	V _{IN} < V _{IN(min)}	V _{EN} < V _{EN, LO}	$V_{BIAS} < V_{BIAS(min)}$	_	T _J > 165°C	

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

 R_1 and R_2 can be calculated for any output voltage using the formula shown in Figure 25. See Table 2 for sample resistor values of common output voltages. To achieve the maximum accuracy specifications, R_2 should be less than or equal to 4.99 k Ω .

Table 2. Standard 1% Resistor Values for Programming the Output Voltage⁽¹⁾

R ₁ (kΩ)	R ₂ (kΩ)	V _{OUT} (V)
Short	Open	0.8
0.619	4.99	0.9
1.13	4.53	1
1.37	4.42	1.05
1.87	4.99	1.1
2.49	4.99	1.2
4.12	4.75	1.5
3.57	2.87	1.8
3.57	1.69	2.5
3.57	1.15	3.3

⁽¹⁾ $V_{OUT} = 0.8 \times (1 + R_1/R_2)$.

Table 3. Standard Capacitor Values for Programming the Soft-Start Time⁽¹⁾

C _{SS}	SOFT-START TIME
Open	0.1 ms
270 pF	0.5 ms
560 pF	1 ms
2.7 nF	5 ms
5.6 nF	10 ms
0.01 μF	18 ms

$$t_{SS}(s) = \frac{V_{REF} \times C_{SS}}{I_{SS}} = \frac{0.8V \times C_{SS}(F)}{0.44 \mu A} \text{ where } t_{SS}(s) = \text{soft-start}$$
 time in seconds.

8.1.1 Input, Output, and Bias Capacitor Requirements

The device is designed to be stable for all available types and values of output capacitors greater than or equal to 2.2 µF. The device is also stable with multiple capacitors in parallel, which can be of any type or value.

The capacitance required on the IN and BIAS pins strongly depends on the input supply source impedance. To counteract any inductance in the input, the minimum recommended capacitor for V_{IN} and V_{BIAS} is 1 μ F. If V_{IN} and V_{BIAS} are connected to the same supply, the recommended minimum capacitor for V_{BIAS} is 4.7 μ F. Good quality, low ESR capacitors should be used on the input; ceramic X5R and X7R capacitors are preferred. These capacitors should be placed as close the pins as possible for optimum performance.

8.1.2 Transient Response

The TPS74701 was designed to have excellent transient response for most applications with a small amount of output capacitance. In some cases, the transient response may be limited by the transient response of the input supply. This limitation is especially true in applications where the difference between the input and output is less than 300 mV. In this case, adding additional input capacitance improves the transient response much more than just adding additional output capacitance would do. With a solid input supply, adding additional output capacitance reduces undershoot and overshoot during a transient event; see Figure 19 in the *Typical Characteristics:* $V_{EN} = V_{IN}$ section. Because the TPS74701 is stable with output capacitors as low as 2.2 μ F, many applications may then need very little capacitance at the LDO output. For these applications, local bypass capacitance for the powered device may be sufficient to meet the transient requirements of the application. This design reduces the total solution cost by avoiding the need to use expensive, high-value capacitors at the LDO output.

8.1.3 Dropout Voltage

The TPS74701 offers very low dropout performance, making it well-suited for high-current, low $V_{IN}/low\ V_{OUT}$ applications. The low dropout of the TPS74701 allows the device to be used in place of a DC-DC converter and still achieve good efficiency. This feature provides designers with the power architecture for their applications to achieve the smallest, simplest, and lowest cost solution.

There are two different specifications for dropout voltage with the TPS74701. The first specification (shown in Figure 22) is referred to as V_{IN} *Dropout* and is used when an external bias voltage is applied to achieve low dropout. This specification assumes that V_{BIAS} is at least 1.39 V (2) above V_{OUT} , which is the case for V_{BIAS} when powered by a 3.3-V rail with 5% tolerance and with V_{OUT} = 1.5 V. If V_{BIAS} is higher than V_{OUT} +1.39 V⁽¹⁾, V_{IN} dropout is less than specified.

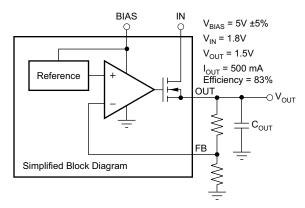


Figure 22. Typical Application of the TPS74701 Using an Auxiliary Bias Rail

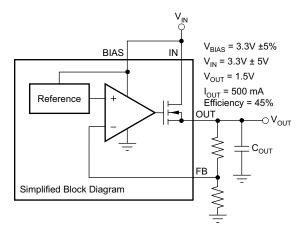


Figure 23. Typical Application of the TPS74701 Without an Auxiliary Bias Rail

(2) 1.62 V is a test condition of this device and can be adjusted by referring to Figure 6.

The second specification (shown in Figure 23) is referred to as V_{BIAS} *Dropout* and applies to applications where IN and BIAS are tied together. This option allows the device to be used in applications where an auxiliary bias voltage is not available or low dropout is not required. Dropout is limited by BIAS in these applications because V_{BIAS} provides the gate drive to the pass FET; therefore, V_{BIAS} must be 1.39-V above V_{OUT} . Because of this usage, IN and BIAS tied together easily consume huge power. Pay attention not to exceed the power rating of the IC package.

8.1.4 Sequencing Requirements

 V_{IN} , V_{BIAS} , and V_{EN} can be sequenced in any order without causing damage to the device. However, for the soft-start function to work as intended, certain sequencing rules must be applied. Connecting EN to IN is acceptable for most applications, as long as V_{IN} is greater than 1.1 V and the ramp rate of V_{IN} and V_{BIAS} is faster than the set soft-start ramp rate. If the ramp rate of the input sources is slower than the set soft-start time, the output tracks the slower supply minus the dropout voltage until it reaches the set output voltage. If EN is connected to BIAS, the device soft-starts as programmed, provided that V_{IN} is present before V_{BIAS} . If V_{BIAS} and V_{EN} are present before V_{IN} is applied and the set soft-start time has expired, then V_{OUT} tracks V_{IN} . If the soft-start time has not expired, the output tracks V_{IN} until V_{OUT} reaches the value set by the charging soft-start capacitor. Figure 24 shows the use of an RC-delay circuit to hold off V_{EN} until V_{BIAS} has ramped. This technique can also be used to drive EN from V_{IN} . An external control signal can also be used to enable the device after V_{IN} and V_{BIAS} are present.

NOTE

When V_{BIAS} and V_{EN} are present and V_{IN} is not supplied, this device outputs approximately 50 μA of current from OUT. Although this condition does not cause any damage to the device, the output current may charge up the OUT node if total resistance between OUT and GND (including external feedback resistors) is greater than 10 k Ω .

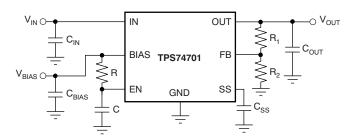


Figure 24. Soft-Start Delay Using an RC Circuit to Enable the Device

8.1.5 Output Noise

The TPS74701 provides low-output noise when a soft-start capacitor is used. When the device reaches the end of the soft-start cycle, the soft-start capacitor serves as a filter for the internal reference. By using a $0.001-\mu F$ soft-start capacitor, the output noise is reduced by half and is typically 30 μV_{RMS} for a 1.2-V output (10 Hz to 100 kHz). Further increasing C_{SS} has little effect on noise. Because most of the output noise is generated by the internal reference, the noise is a function of the set output voltage. The RMS noise with a $0.001-\mu F$ soft-start capacitor is given in Equation 3:

$$V_{N}(\mu V_{RMS}) = 25 \left(\frac{\mu V_{RMS}}{V}\right) \times V_{OUT}(V)$$
(3)

The low-output noise of the TPS74701 makes it a good choice for powering transceivers, PLLs, or other noise-sensitive circuitry.

Product Folder Links: TPS74701

Copyright © 2007-2015, Texas Instruments Incorporated

8.2 Typical Application

Figure 25 illustrates the typical application circuit for the TPS74701 adjustable output device.

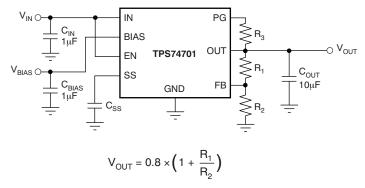
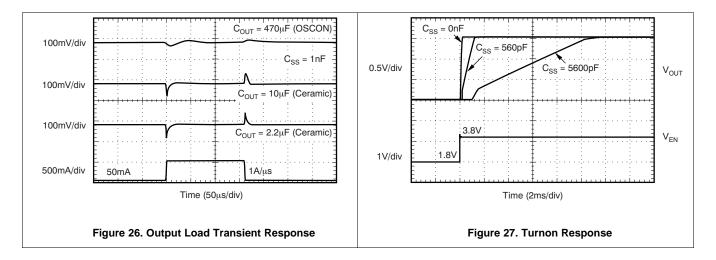


Figure 25. Typical Application Circuit for the TPS74701 (Adjustable)

8.2.1 Design Requirements

Table 4 shows the design parameters for this application.


Table 4. Design Parameters

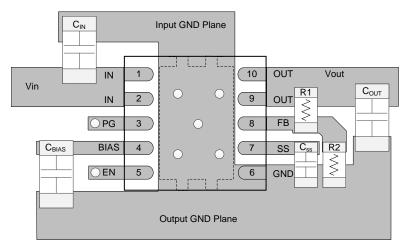
DESIGN PARAMETER	EXAMPLE VALUE
VIN	1.8 V ± 10%
VBIAS	3.3 V ±10%
VOUT	1.5 V ± 3%
IOUT	500 mA
Start-up time	< 2 ms

8.2.2 Detailed Design Procedure

- 1. Select R1 and R2 based on the required output voltage. Table 2 gives example calculations for many common output voltages.
- 2. Select C_{SS} to be the highest capacitance while still achieving the desired start-up time. Table 3 gives examples of this calculation.
- 3. Select a minimum of a 2.2-µF ceramic output capacitor. Increased output capacitance will help the output load transient response. Figure 27 gives examples of the load transient response with different output capacitor values and types.

8.2.3 Application Curves

9 Power Supply Recommendations


The TPS74701 is designed to operate from an input voltage up to 5.5 V, provided the bias rail is at least 1.39-V higher than the input supply and dropout requirements are met. The bias rail and the input supply should both provide adequate headroom and current for the device to operate normally. Connect a low-output impedance power supply directly to the IN pin of the TPS74701. This supply must have at least 1 μ F of capacitance near the IN pin for optimal performance. A supply with similar requirements must also be connected directly to the bias rail with a separate 1- μ F or larger capacitor. If the IN pin is tied to the bias pin, a minimum 4.7 μ F of capacitance is needed for performance. To increase the overall PSRR of the solution at higher frequencies, use a pi-filter or ferrite bead before the input capacitor.

10 Layout

10.1 Layout Guidelines

An optimal layout can greatly improve transient performance, PSRR, and noise. To minimize the voltage droop on the input of the device during load transients, connect the capacitance on IN, OUT and BIAS as close as possible to the device. If BIAS is connected to IN, connect BIAS as close to the input supply as possible. This connection minimizes the voltage droop on BIAS during transient conditions and can improve the turnon response.

10.2 Layout Example

Note: C_{IN} , C_{OUT} , and C_{BIAS} are 0603 case size capacitors, while C_{SS} , R_1 , and R_2 are 0402 case size.

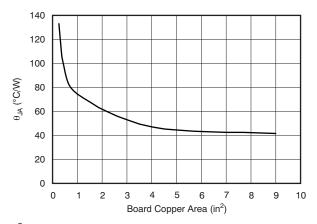
Figure 28. TPS547 Layout Recommendation

10.3 Power Dissipation

An optimal layout can greatly improve transient performance, PSRR, and noise. To minimize the voltage drop on the input of the device during load transients, the capacitance on IN and BIAS should be connected as close as possible to the device. This capacitance also minimizes the effects of parasitic inductance and resistance of the input source and can therefore improve stability. To achieve optimal transient performance and accuracy, the top side of R_1 in Figure 25 should be connected as close as possible to the load. If BIAS is connected to IN, TI recommends connecting BIAS as close to the sense point of the input supply as possible. This connection minimizes the voltage drop on BIAS during transient conditions and can improve the turnon response.

Knowing the device power dissipation and proper sizing of the thermal plane that is connected to the thermal pad is critical to avoiding thermal shutdown and ensuring reliable operation. Power dissipation of the device depends on input voltage and load conditions and can be calculated using Equation 4:

 $P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT}$ (4)


Power Dissipation (continued)

Power dissipation can be minimized and greater efficiency can be achieved by using the lowest possible input voltage necessary to achieve the required output voltage regulation.

On the SON (DRC) package, the primary conduction path for heat is through the exposed pad to the printed-circuit-board (PCB). The pad can be connected to ground or be left floating; however, it should be attached to an appropriate amount of copper PCB area to ensure the device does not overheat. The maximum junction-to-ambient thermal resistance depends on the maximum ambient temperature, maximum device junction temperature, and power dissipation of the device and can be calculated using Equation 5:

$$R_{\theta JA} = \frac{(+125^{\circ}C - T_A)}{P_D} \tag{5}$$

Knowing the maximum $R_{\theta JA}$, the minimum amount of PCB copper area needed for appropriate heatsinking can be estimated using Figure 29.

Note: θ_{JA} value at board size of $9in^2$ (that is, 3 inches × 3 inches) is a JEDEC standard.

Figure 29. θ_{JA} vs Board Size

Figure 29 shows the variation of θ_{JA} as a function of ground plane copper area in the board. It is intended only as a guideline to demonstrate the effects of heat spreading in the ground plane and should not be used to estimate actual thermal performance in real application environments.

NOTE

When the device is mounted on an application PCB, TI strongly recommends using Ψ_{JT} and Ψ_{JB} , as explained in the section.

10.4 Estimating Junction Temperature

Using the thermal metrics Ψ_{JT} and Ψ_{JB} , as shown in the *Thermal Information* table, the junction temperature can be estimated with corresponding formulas (given in Equation 6). For backwards compatibility, an older θ_{JC} , *Top* parameter is listed as well.

$$\Psi_{JT}$$
: $T_J = T_T + \Psi_{JT} \cdot P_D$
 Ψ_{JB} : $T_J = T_B + \Psi_{JB} \cdot P_D$

where

- P_D is the power dissipation shown by Equation 5.
- T_T is the temperature at the center-top of the IC package.
- T_B is the PCB temperature measured 1mm away from the IC package on the PCB surface (as Figure 31 shows).

(6)

Estimating Junction Temperature (continued)

NOTE

Both T_T and T_B can be measured on actual application boards using a thermo-gun (an infrared thermometer).

For more information about measuring T_T and T_B , see the application note SBVA025, *Using New Thermal Metrics*, available for download at www.ti.com.

By looking at Figure 30, the new thermal metrics (Ψ_{JT} and Ψ_{JB}) have very little dependency on board size. That is, using Ψ_{JT} or Ψ_{JB} with Equation 6 is a good way to estimate T_J by simply measuring T_T or T_B , regardless of the application board size.

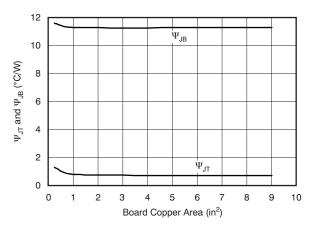


Figure 30. Ψ_{JT} and Ψ_{JB} vs Board Size

For a more detailed discussion of why TI does not recommend using $\theta_{\text{JC(top)}}$ to determine thermal characteristics, see application report SBVA025, *Using New Thermal Metrics*, available for download at www.ti.com. For further information, see application report SPRA953, *Semiconductor and IC Package Thermal Metrics*, also available on the TI website.

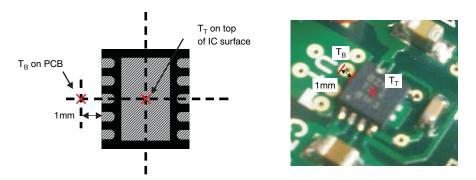


Figure 31. Measuring Points for T_T and T_B

Product Folder Links: TPS74701

Copyright © 2007-2015, Texas Instruments Incorporated

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

11.1.1.1 Evaluation Module

An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the TPS74701. The TPS74701EVM-177 evaluation module (and related user guide) can be requested at the Texas Instruments website through the product folders or purchased directly from the TI eStore.

11.1.1.2 Spice Models

Computer simulation of circuit performance using SPICE is often useful when analyzing the performance of analog circuits and systems. A SPICE model for TPS74701 is available through the product folders under Simulation Models.

11.1.2 Device Nomenclature

Table 5. Device Nomenclature⁽¹⁾

PRODUCT	V _{OUT} ⁽²⁾					
	xx is nominal output voltage (for example, 12 = 1.2 V, 15 = 1.5 V, 01 = Adjustable). (3) YYY is the package designator. Z is package quantity.					

⁽¹⁾ For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder on www.ti.com.

11.2 Documentation Support

11.2.1 Related Documentation

For related documentation see the following:

- Using New Thermal Metrics, SBVA025
- Semiconductor and IC Package Thermal Metrics, SPRA953

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

⁽²⁾ Fixed output voltages from 0.8 V to 3.3 V are available; minimum order quantities may apply. Contact factory for details and availability.

⁽³⁾ For fixed 0.8-V operation, tie FB to OUT.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

20-Mar-2015

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
TPS74701DRCR	ACTIVE	VSON	DRC	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	CEG	Samples
TPS74701DRCRG4	ACTIVE	VSON	DRC	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	CEG	Samples
TPS74701DRCT	ACTIVE	VSON	DRC	10	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	CEG	Samples
TPS74701DRCTG4	ACTIVE	VSON	DRC	10	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	CEG	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

20-Mar-2015

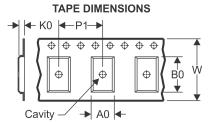
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS74701:

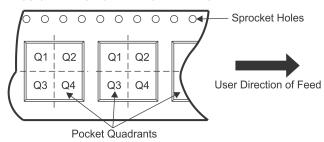
Automotive: TPS74701-Q1

NOTE: Qualified Version Definitions:

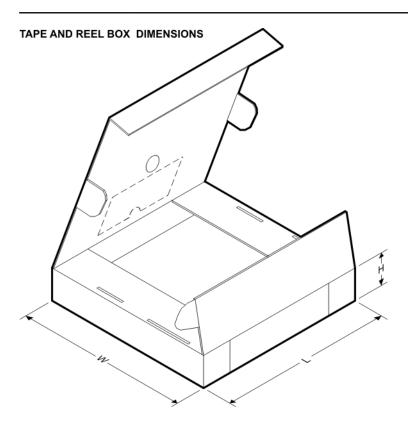

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

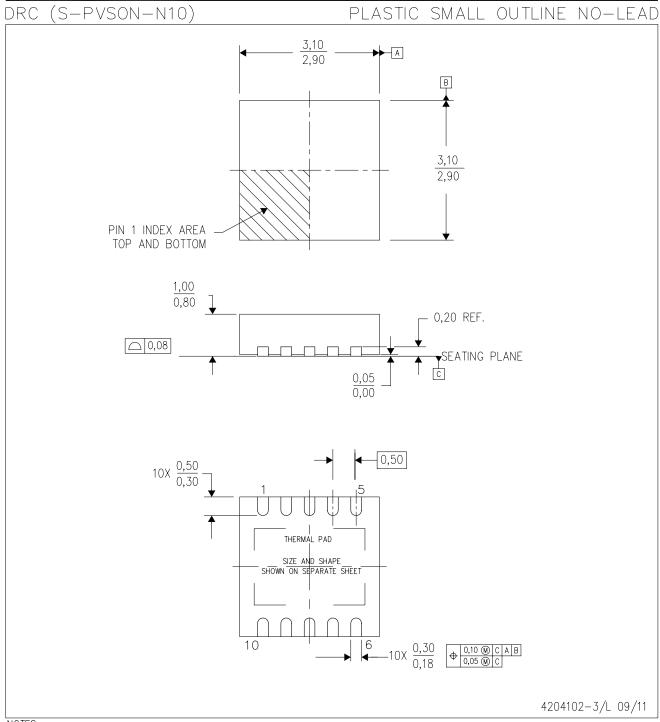
www.ti.com 20-Mar-2015


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


All differsions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS74701DRCR	VSON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS74701DRCT	VSON	DRC	10	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS74701DRCT	VSON	DRC	10	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

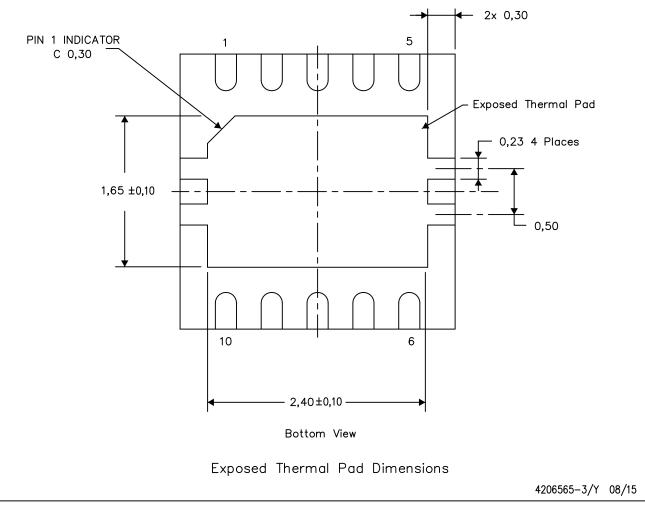
www.ti.com 20-Mar-2015

*All dimensions are nominal

7 til dillionononono are memilia							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS74701DRCR	VSON	DRC	10	3000	367.0	367.0	35.0
TPS74701DRCT	VSON	DRC	10	250	210.0	185.0	35.0
TPS74701DRCT	VSON	DRC	10	250	210.0	185.0	35.0

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. Small Outline No-Lead (SON) package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance, if present.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions, if present

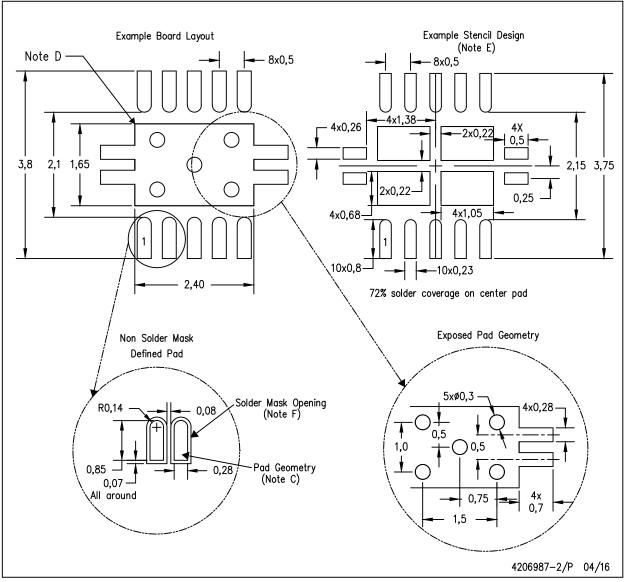
DRC (S-PVSON-N10)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.


The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

DRC (S-PVSON-N10)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A.

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity www.ti.com/wirelessconnectivity