

www.ti.com

SBOS598A - DECEMBER 2012-REVISED DECEMBER 2012

36-V, SINGLE-SUPPLY, LOW-POWER OPERATIONAL AMPLIFIER

Check for Samples: OPA170-EP

FEATURES

Supply Range: +2.7V to +36V, ±1.35V to ±18V

Low Noise: 19nV/√Hz

RFI Filtered Inputs

Input Range Includes the Negative Supply

Input Range Operates to Positive Supply

Rail-to-Rail Output

Gain Bandwidth: 1.2MHz

Low Quiescent Current: 110µA per Amplifier

High Common-Mode Rejection: 120dB

Low Bias Current: 15pA (max)

microPackage:

Single in 5-Pin SOT553

APPLICATIONS

- **Tracking Amplifier in Power Modules**
- **Merchant Power Supplies**
- **Transducer Amplifiers**
- **Bridge Amplifiers**
- **Temperature Measurements**
- **Strain Gauge Amplifiers**
- **Precision Integrators**
- **Battery-Powered Instruments**
- **Test Equipment**

SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS

- **Controlled Baseline**
- One Assembly or Test Site
- One Fabrication Site
- Available in Extended (-40°C to 150°C) **Temperature Range** (1)
- **Extended Product Life Cycle**
- **Extended Product-Change Notification**
- **Product Traceability**
- (1) Additional temperature ranges available contact factory

DESCRIPTION

The OPA170 is a 36-V, single-supply, low-noise operational amplifier that features a micro package with the ability to operate on supplies ranging from +2.7V (±1.35V) to +36V (±18V). It offers good offset, drift, and bandwidth with low quiescent current.

Unlike most op amps, which are specified at only one supply voltage, the OPA170 is specified from +2.7V to +36V. Input signals beyond the supply rails do not cause phase reversal. The OPA170 is stable with capacitive loads up to 300pF. The input can operate 100mV below the negative rail and within 2V of the positive rail for normal operation. Note that these devices can operate with full rail-to-rail input 100mV beyond the positive rail, but with reduced performance within 2V of the positive rail.

The OPA170 is available in the SOT553-5 package and is specified from -40°C to +150°C.

Package Footprint (to Scale)

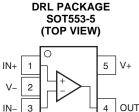
Package Height (to Scale)

DRL (SOT553)

Smallest Packaging for 36V Op Amps

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.


ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

T _A	PACKAGE	ORDERABLE PART NUMBER	TOP-SIDE MARKING	VID NUMBER	
–40°C to 150°C	SOT553-5 - DRL	OPA170ASDRLTEP	SHN	V62/12627-01XE	

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS(1)

Over operating free-air temperature range, unless otherwise noted

			UNIT
Supply voltage		±20, +40 (single supply)	V
Signal input terminals	Voltage	(V-) - 0.5 to (V+) + 0.5	V
	Current	±10	mA
Output short circuit ⁽²⁾		Continuous	
Operating temperature		-40 to +150	°C
Storage temperature		-65 to +150	°C
Junction temperature		+150	°C
Storage temperature Junction temperature ESD ratings	Human body model (HBM)	4	kV
ESD failings	Charged device model (CDM)	750	V

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

THERMAL INFORMATION

		OPA170		
	THERMAL METRIC(1)	DRL (SOT553)	UNITS	
		5 PINS		
θ_{JA}	Junction-to-ambient thermal resistance	226.8		
$\theta_{JC(top)}$	Junction-to-case(top) thermal resistance	80.3		
θ_{JB}	Junction-to-board thermal resistance	42.9	90/11	
Ψлт	Junction-to-top characterization parameter	3.2	°C/W	
ΨЈВ	Junction-to-board characterization parameter	42.5		
θ _{JC(bottom)}	Junction-to-case(bottom) thermal resistance	N/A		

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

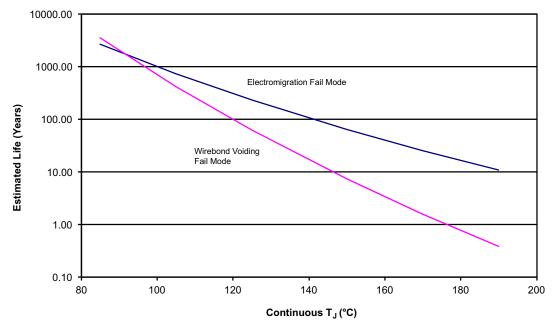
⁽²⁾ Short-circuit to ground, one amplifier per package.

www.ti.com

ELECTRICAL CHARACTERISTICS

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to +150°C. At $T_A = +25^{\circ}C$, $V_{CM} = V_{OUT} = V_S/2$, and $R_L = 10k\Omega$ connected to $V_S/2$, unless otherwise noted.

<i>J</i> ,	TEST CONDITIONS	MINI	TVD	MAY	UNIT
	TEST CONDITIONS	IVIIIV	117	IVIAA	UNIT
				1	
V _{os}			0.25		mV
	$T_A = -40^{\circ}C \text{ to } +150^{\circ}C$			±2.5	mV
dV _{OS} /dT			±0.3		μV/°C
PSRR	$V_S = +4V \text{ to } +36V$		1	±5	μV/V
	dc		5		μV/V
I_{B}			±8	±15	pA
	$T_A = -40$ °C to +150°C			±8	nA
Ios			±4	±15	pA
	T _A = -40°C to +150°C			±8	nA
	f = 0.1Hz to 10Hz		2		μV _{PP}
	f = 100Hz		22		nV/√ Hz
e _n	f = 1kHz		19		nV/√ Hz
V_{CM}		(V-) - 0.1V		(V+) - 2V	V
	$V_S = \pm 2V$, $(V-) - 0.1V < V_{CM} < (V+) - 2V$	87	104		dB
CMRR	$V_S = \pm 18V$, $(V-) - 0.1V < V_{CM} < (V+) - 2V$	100	120		dB
			100 3		MΩ pF
			6 3		10 ¹² Ω pF
A _{OL}	$V_S = +4V \text{ to } +36V,$ $(V-) + 0.35V < V_O < (V+) - 0.35V$	107	130		dB
GBP			1.2		MHz
SR	G = +1		0.4		V/µs
	To 0.1%, $V_S = \pm 18V$, $G = +1$, 10V step		20		μs
t _S		28			μs
	V _{IN} × Gain > V _S		2		μs
THD+N	-				%
	I _B I _{OS} e _n V _{CM} CMRR	$T_{A} = -40^{\circ}\text{C to } +150^{\circ}\text{C}$ dV_{OS}/dT $PSRR$ $V_{S} = +4V \text{ to } +36V$ dc I_{B} $T_{A} = -40^{\circ}\text{C to } +150^{\circ}\text{C}$ I_{OS} $T_{A} = -40^{\circ}\text{C to } +150^{\circ}\text{C}$ $f = 0.1\text{Hz to } 10\text{Hz}$ $f = 100\text{Hz}$ $f = 100\text{Hz}$ $f = 1k\text{Hz}$ V_{CM} V_{SM} $V_{S} = \pm 2V, (V-) - 0.1V < V_{CM} < (V+) - 2V$ $V_{S} = \pm 18V, (V-) - 0.1V < V_{CM} < (V+) - 2V$ $V_{S} = \pm 18V, (V-) - 0.1V < V_{CM} < (V+) - 2V$ $V_{S} = \pm 18V, (V-) + 0.35V < V_{O} < (V+) - 0.35V$ GBP SR $G = +1$ $To 0.1\%, V_{S} = \pm 18V, G = +1, 10V \text{ step}$ $To 0.01\% (12 \text{ bit)}, V_{S} = \pm 18V, G = +1, 10V \text{ step}$ $V_{IN} \times Gain > V_{S}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


⁽¹⁾ The input range can be extended beyond (V+) – 2V up to V+. See the *Typical Characteristics* and *Application Information* sections for additional information.

Product Folder Links: OPA170-EP

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to +150°C. At $T_A = +25^{\circ}C$, $V_{CM} = V_{OUT} = V_S/2$, and $R_L = 10k\Omega$ connected to $V_S/2$, unless otherwise noted.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ОИТРИТ	<u> </u>				<u> </u>	
Voltage output swing from rail	Vo					
Positive rail		$I_L = 0$ mA, $V_S = +4V$ to $+36V$	10			mV
Positive rail		I _L sourcing 1mA, V _S = +4V to +36V	130			mV
Negative Deil		$I_L = 0$ mA, $V_S = +4V$ to $+36V$			8	mV
Negative Rail		I_L sinking 1mA, $V_S = +4V$ to +36V			72	mV
Over temperature		$V_S = 5V$, $R_L = 10k\Omega$	(V-) + 0.03	((V+) - 0.05	٧
		$R_L = 10k\Omega, A_{OL} \ge 107dB$	(V-) + 0.35		(V+) - 0.35	٧
Short-circuit current	I _{SC}			+17/–20		mA
Capacitive load drive	C_{LOAD}		See Typica	al Characteristi	ics	pF
Open-loop output resistance	R _O	f = 1MHz, I _O = 0A		900		Ω
POWER SUPPLY	<u> </u>				<u> </u>	
Specified voltage range	Vs		+2.7		+36	V
Quiescent current per amplifier	IQ	I _O = 0A		110	145	μA
Over temperature		I _O = 0A			160	μΑ
TEMPERATURE	<u> </u>				<u> </u>	
Specified range			-40		+125	°C
Operating range			-40		+150	°C

- (1) See datasheet for absolute maximum and minimum recommended operating conditions.
- Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect
- (3) Enhanced plastic product disclaimer applies.

Figure 1. OPA170-EP Operating Life Derating Chart

Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

TYPICAL CHARACTERISTICS

 $V_S = \pm 18V$, $V_{CM} = V_S/2$, $R_{LOAD} = 10k\Omega$ connected to $V_S/2$, and $C_L = 100pF$, unless otherwise noted.

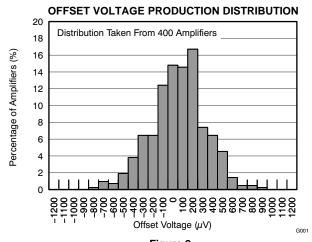


Figure 2.

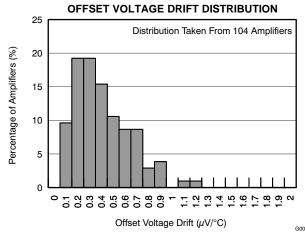


Figure 3.

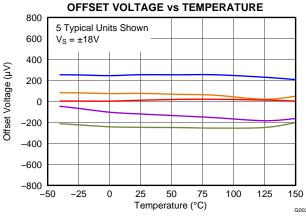
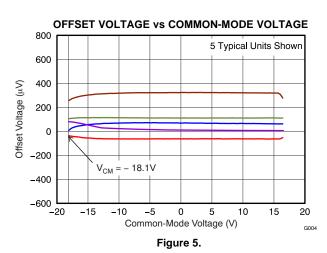
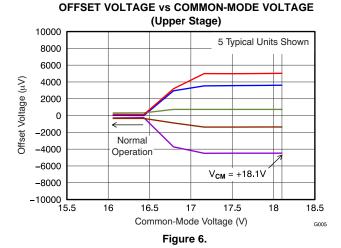




Figure 4.

OFFSET VOLTAGE vs POWER SUPPLY

Vsupply = ±1.35V to ± 18V
5 Typical Units Shown

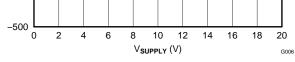
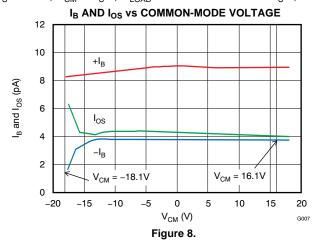


Figure 7.

Offset Voltage (µV)


100

-100

-300

 $V_S = \pm 18V$, $V_{CM} = V_S/2$, $R_{LOAD} = 10k\Omega$ connected to $V_S/2$, and $C_L = 100pF$, unless otherwise noted.

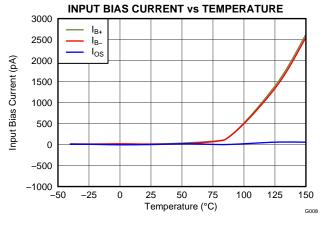
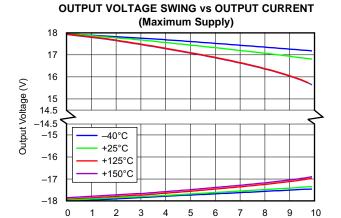



Figure 9.

Output Current (mA)

Figure 10.

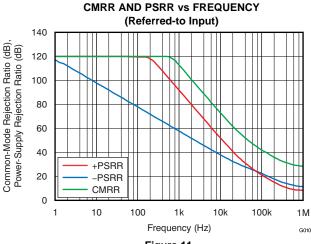
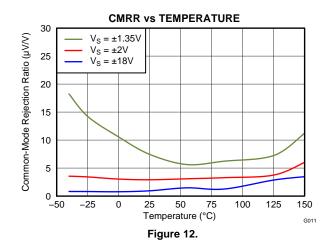
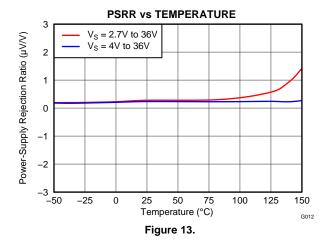
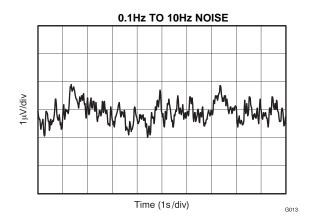




Figure 11.



Submit Documentation Feedback

G009

 $V_S = \pm 18 V$, $V_{CM} = V_S/2$, $R_{LOAD} = 10 k\Omega$ connected to $V_S/2$, and $C_L = 100 pF$, unless otherwise noted.

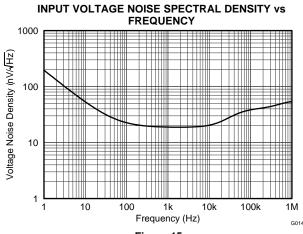
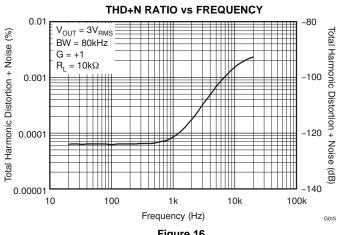



Figure 14.

Figure 15.

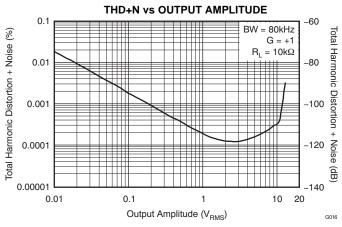
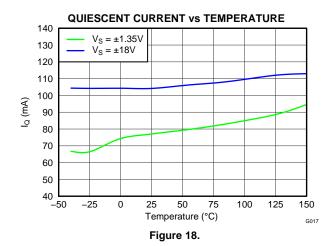



Figure 16.

Figure 17.

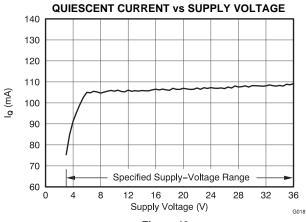
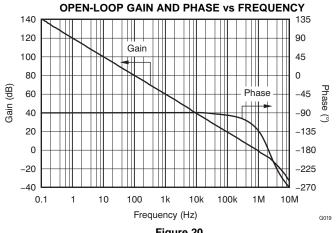



Figure 19.

 $V_S = \pm 18 V$, $V_{CM} = V_S/2$, $R_{LOAD} = 10 k\Omega$ connected to $V_S/2$, and $C_L = 100 pF$, unless otherwise noted.

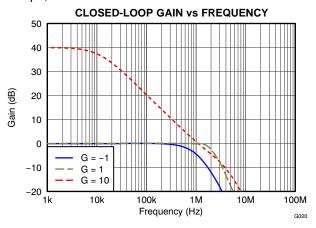
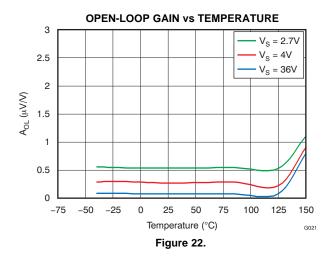
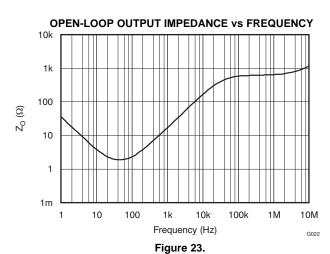




Figure 20.

Figure 21.

SMALL-SIGNAL OVERSHOOT vs CAPACITIVE LOAD (100mV Output Step)

60 $R_L = 10k\Omega$ 55 50 45 40 Overshoot (%) 35 30 25 G = + 20 15 $R_{OUT} = 0\Omega$ 10 $R_{OUT} = 25\Omega$ $--R_{OUT} = 50\Omega$ 100 200 300 400 500 600 700 800 900 1000 Capacitive Load (pF) Figure 24.

SMALL-SIGNAL OVERSHOOT vs CAPACITIVE LOAD (100mV Output Step)

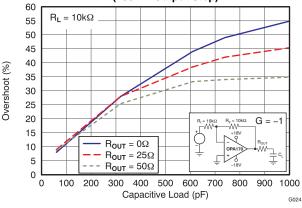


Figure 25.

 $V_S=\pm 18V,\,V_{CM}=V_S/2,\,R_{LOAD}=10k\Omega \text{ connected to }V_S/2,\,\text{and }C_L=100pF,\,\text{unless otherwise noted}.$

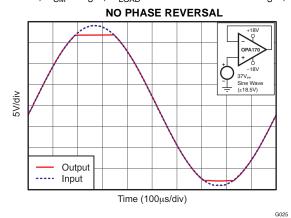


Figure 26.

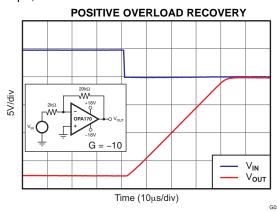


Figure 27.

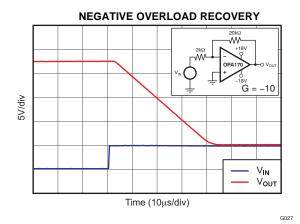


Figure 28.

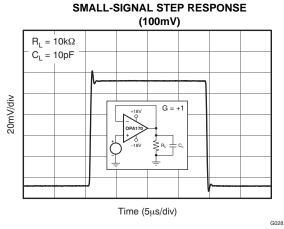
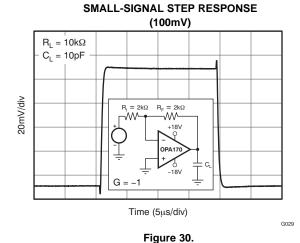
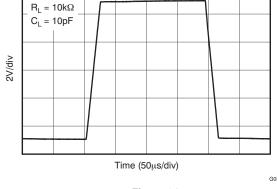




Figure 29.

LARGE-SIGNAL STEP RESPONSE

G = +1

Figure 31.

Copyright © 2012, Texas Instruments Incorporated

 $V_S = \pm 18V$, $V_{CM} = V_S/2$, $R_{LOAD} = 10k\Omega$ connected to $V_S/2$, and $C_L = 100pF$, unless otherwise noted.

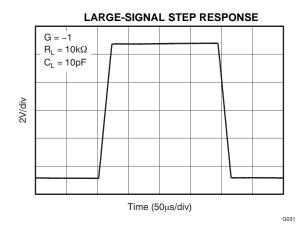


Figure 32.

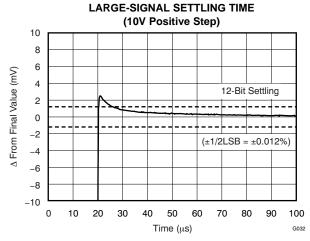


Figure 33.

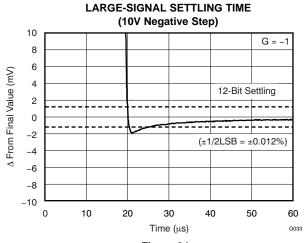


Figure 34.

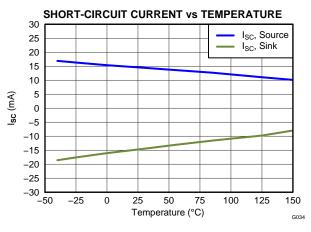


Figure 35.

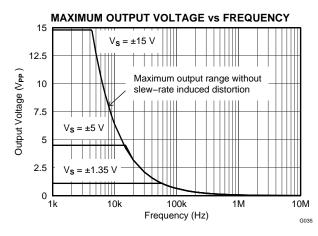


Figure 36.

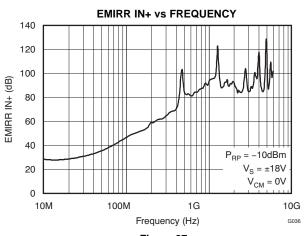


Figure 37.

APPLICATION INFORMATION

The OPA170 operational amplifier provides high overall performance. This device is ideal for many general-purpose applications. The excellent offset drift of only $2\mu V/^{\circ}C$ provides excellent stability over the entire temperature range. In addition, the device offers very good overall performance with high CMRR, PSRR, and A_{OL} . As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling capacitors placed close to the device pins. In most cases, $0.1\mu F$ capacitors are adequate.

OPERATING CHARACTERISTICS

The OPA170 is specified for operation from 2.7V to 36V (±1.35V to ±18V). Many of the specifications apply from -40°C to +150°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the Typical Characteristics.

GENERAL LAYOUT GUIDELINES

For best operational performance of the device, good printed circuit board (PCB) layout practices are recommended. Low-loss, 0.1µF bypass capacitors should be connected between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable to single-supply applications.

COMMON-MODE VOLTAGE RANGE

The input common-mode voltage range of the OPA170 extends 100mV below the negative rail and within 2V of the positive rail for normal operation.

This device can operate with full rail-to-rail input 100mV beyond the positive rail, but with reduced performance within 2V of the positive rail. The typical performance in this range is summarized in Table 1.

PHASE-REVERSAL PROTECTION

The OPA170 has an internal phase-reversal protection. Many op amps exhibit a phase reversal when the input is driven beyond its linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The input of the OPA170 prevents phase reversal with excessive common-mode voltage. Instead, the output limits into the appropriate rail. This performance is shown in Figure 38.



Figure 38. No Phase Reversal

Table 1. Typical Performance Range

PARAMETER	MIN	TYP	MAX	UNIT
Input Common-Mode Voltage	(V+) - 2		(V+) + 0.1	V
Offset voltage		7		mV
vs Temperature		12		μV/°C
Common-mode rejection		65		dB
Open-loop gain		60		dB
Gain-bandwidth product		0.3		MHz
Slew rate		0.3	·	V/µs

Product Folder Links: OPA170-EP

CAPACITIVE LOAD AND STABILITY

The dynamic characteristics of the OPA170 have been optimized for common operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output. The simplest way to achieve this isolation is to add a small resistor (for example, ROLLT equal to 50Ω) in series with the output. Figure 39 and Figure 40 illustrate graphs of small-signal overshoot versus capacitive load for several values of ROUT. Also, refer to Applications Bulletin AB-028, Feedback Plots Define Op Amp AC Performance (literature number SBOA015, available for download from the TI website), for details of analysis techniques and application circuits.

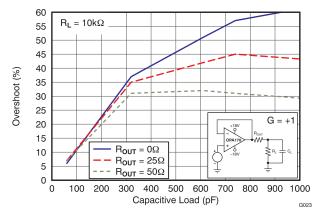


Figure 39. Small-Signal Overshoot versus Capacitive Load (100mV Output Step, G = +1)

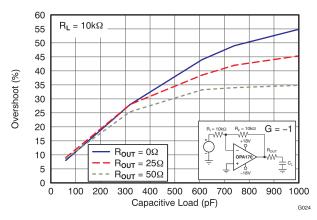
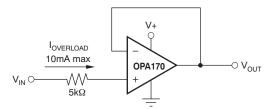



Figure 40. Small-Signal Overshoot versus Capacitive Load (100mV Output Step, G = -1)

ELECTRICAL OVERSTRESS

Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly.

These ESD protection diodes also provide in-circuit, input overdrive protection, as long as the current is limited to 10mA as stated in the Absolute Maximum Ratings. Figure 41 shows how a series input resistor may be added to the driven input to limit the input current. The added resistor contributes thermal noise at the amplifier input and its value should be kept to a minimum in noise-sensitive applications.

Figure 41. Input Current Protection

An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-current pulse as it discharges through a semiconductor device. The ESD protection circuits are designed to provide a current path around the operational amplifier core to prevent it from being damaged. The energy absorbed by the protection circuitry is then dissipated as heat.

When the operational amplifier connects into a circuit, the ESD protection components are intended to remain inactive and not become involved in the application circuit operation. However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. Should this condition occur, there is a risk that some of the internal ESD protection circuits may be biased on, and conduct current. Any such current flow occurs through ESD cells and rarely involves the absorption device.

www.ti.com

If there is an uncertainty about the ability of the supply to absorb this current, external zener diodes may be added to the supply pins. The zener voltage must be selected such that the diode does not turn on during normal operation. However, its zener voltage should be low enough so that the zener diode conducts if the supply pin begins to rise above the safe operating supply voltage level.

PACKAGE OPTION ADDENDUM

28-Feb-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
OPA170ASDRLTEP	ACTIVE	SOT-OTHER	DRL	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 150	DAQ	Samples
V62/12627-01XE	ACTIVE	SOT-OTHER	DRL	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 150	DAQ	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

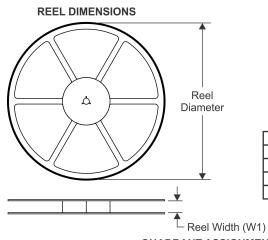
PACKAGE OPTION ADDENDUM

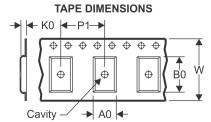
28-Feb-2017

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF OPA170-EP:

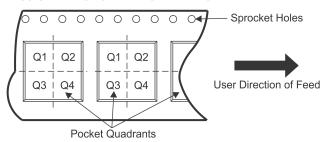
• Automotive: OPA170-Q1


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

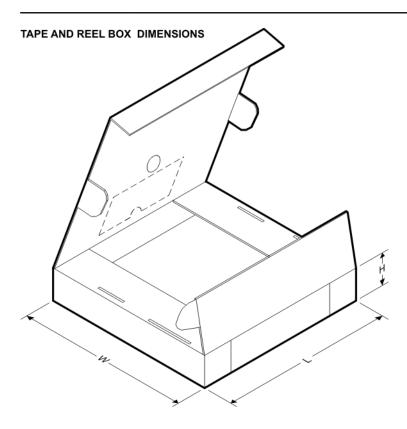
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Mar-2017


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

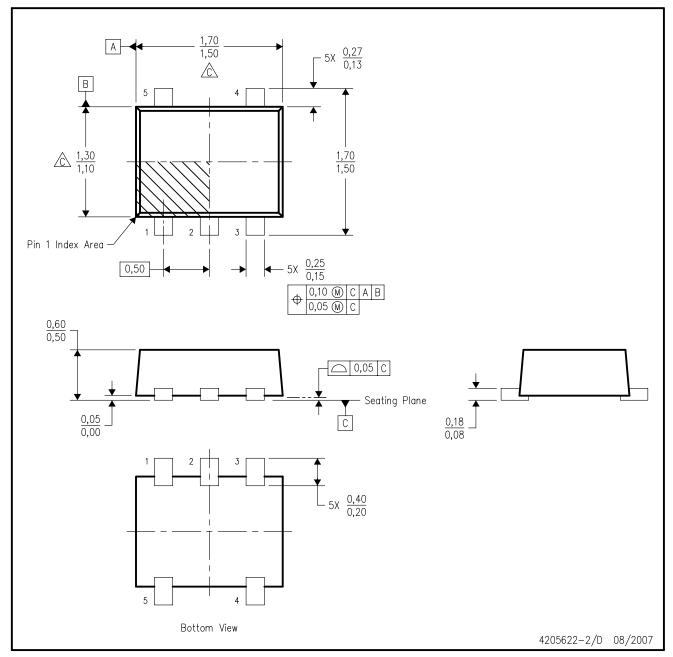


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA170ASDRLTEP	SOT- OTHER	DRL	5	250	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Mar-2017



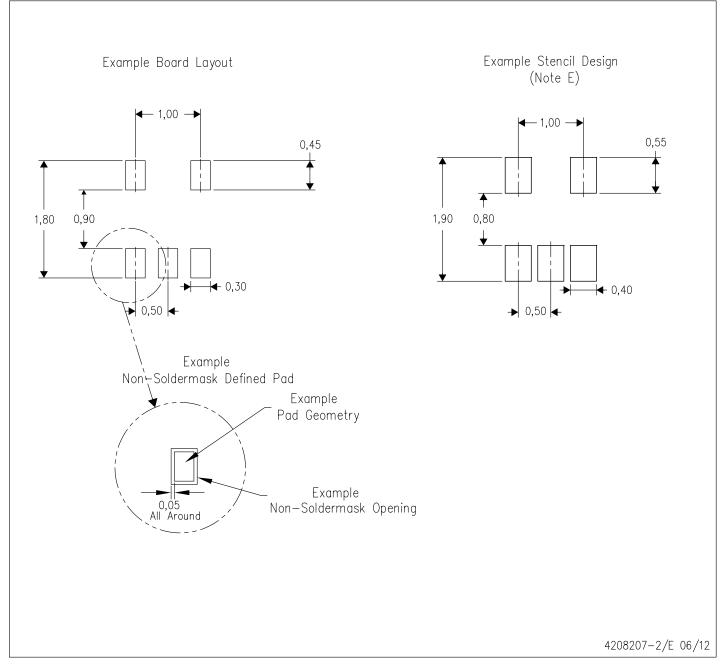
*All dimensions are nominal

Ī	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
	OPA170ASDRLTEP	SOT-OTHER	DRL	5	250	202.0	201.0	28.0	

DRL (R-PDSO-N5)

PLASTIC SMALL OUTLINE

NOTES:


- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs.

 Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side.
- D. JEDEC package registration is pending.

DRL (R-PDSO-N5)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.